|

A NEW APPROACH TO VALIDATE
SUBGRID MODELS IN
COMPLEX HIGH REYNOLDS NUMBER FLOWS

Annual Report for the Period: June, 1994 -May, 1995
Grant Number: N00014-93-1-0342 |

Suresh Menon
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0150

Bppeoved b poblie wadeonny

OISR AT NETRT t
DMWM?M Uy}.zxu ] ‘

DTIC QUALITY INSPECTED g

19961030 0gp e

e




poll - 50

REPORT DOCUMENTATION PAGE

Form
OMB No. 07040188

Pudic reporniag foe e of i

-
masntaining (he dats aseded, sad compisting sad revarwiag the eolh of

3 0 rlnwpu!qo-.hduulhuuhr
m:uu-uuﬂn-mnuuuyulnmadlum-ondwnl.

§ castag deis eources, gaihenng snd

JIE

Send
cluding Puggestions for reduniag (s burdes 10 Washingioa Hesdquariers Semces, Direciorsis for imiormatios Operaiions and Reports, 1215 Jeflaraos Deves Jiighwey, Suwis 1204, Arungon, VA

222024301, aad 10 the Ofice of Masagrment and Budget, Paperwork Reduaion Projes (0704-0186), Washiagion, DC 20500

1. AGENCY USE ONLY (Loswe Biandy) 33::’?83%

MEPORT
T IS Ao MRS ™04 ~ May 1995

4. TIUE ANO SUGTMLE A New Approach to Validate Subgrid
Models in Complex High Reynolds Number Flows

¢ AUTHOR(S) Suresh Menon

S FUNDING NUMBERS
N00014-93-1-0342

7. PCRFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dr. Suresh Menon

School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0150

8 PERPORMING ORGANIZATION REPORT NUMBER

9. SPONSORING /MONTTORING A GENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research ’
Atlanta Regional Office
101 Marietta Tower

101 Mareitta St., Suite 2805
Atlanta. GA 30323-0008

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

1. suppLRMENTARY notes  COR:

122 DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

12 DISTRIBUTION CODE

13. ABSTRACT (Masum 200 wards)

A dynamic subgrid model was developed by using a method that employed the scale similarity

concept for validating the behavior of the subgrid models. Since [ C
s no need to employ spectral space information

be used directly in the physical space, there wa

the scale similarity approach can

for implementing the subgrid model (although spectral space analysis was carried out to compare

with past models). Thus, the new dynamic approach has potential for ap

complex flows. The key feature of the dynamic model is that it is a ly 1
f flow problems. The flow fields where no

not require any type of averaging for a range o

averaging was required are: (i) Taylor-Green flow, (ii) decaying isotropic turbulence, (iii
s and, (v) free circular jet with axial entrainment.

isotropic turbulence, iv) temporal mixing layer

plication to more
1 model and does

) forced

W SUNECTTERMS [ .yoe eddy simulations, Dynamic model,

Subgrid model.

1S. NUMBER OF PAGES
200

16 PRICE CODE

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

2. LUIMITATION OF ABSTRACT

Unlimited

NSN 7340-01-280-5800

Suanced Form 208 (Rev 2-49)
Prescrbed by ANSI i 226-18 208-102




1

P -

ANEW APPROACH TO VALIDATE SUBGRID MODELS IN COMPLEX HIGH
REYNOLDS NUMBER FLOWS

Annual Report for the Period: June, 1994 -May, 1995
Grant Number: N00014-93-1-0342

Suresh Menon
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0150

1. INTRODUCTION

This second annual report summarizes the progress made in the last year. The overall objectives
of this research are to develop new methods to evaluate subgrid models and then to utilize these
methods to improve the chosen subgrid models. The subgrid models investigated in this research
are chosen primarily for application in high Reynolds number complex flows. Akey breakthrough
this year was the development of a new localized dynamic subgrid model that no longer requires

the Germano’s identity; however, it is still dynamic model. This model was developed by using a
method that employed the scale similarity concept for validating the behavior of the subgrid mod-
els . Since the scale similarity approach can be used directly in the physical space, there was no
need to employ spectral space information for implementing the subgrid model (although spectral
space analysis was carried out to compare with past models). Thus, the new dynamic approach
has potential for application to more complex flows. The key feature of the dynamic model is that
it is a truly local model and does not require any type of averaging for a range of flow problems.
ing was required are: (i) Taylor-Green flow, (ii) Decaying Isotropic

The flow fields were no averagt
turbulence, (iii) Forced isotropic turbulence, (iv) Temporal mixing layers and, (v) free circular jet
) were required to

with axial entrainment. Some modifications (including cross-stream averaging
handle more complex flows such as (vi) turbulent Couette flow. However, preliminary results sug-
gest that the cross-stream averaging for the wall bounded flows may be a limitation of the dissipa-
tion term in the one-equation subgrid model and not in the local dynamic modeling concept
developed here. These issues are currently being addressed and we believe that it will be possible
to develop a truly local dynamic subgrid model for even very complex flows.

The results obtained so far are discussed in detail in the preprints of the papers (Menon et al,,
1995; Kim and Menon, 1995a, 1995b; Menon and Kim, 1995; Chakravarty and Menon, 1995)

that are included as appendices. For the flows studied so far, the results clearly show that the pro-

posed model is (i) superior to classical eddy viscosity based dynamic model, (ii) can predict the
ally very efficient. In the fol-

flow accurately using relatively coarse grids, and (iii) is computation
lowing, we summarizes the highlights of the research carried out in the last year.
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2. DEVELOPMENT OF A NEW LOCALIZED DYNAMIC MODEL

In the earlier studies (Menon and Yeung, 1994; Menon et al., 1995) various subgrid models were
analyzed to investigate their behavior in predicting the subgrid stresses and energy transfer. Using
cross-correlation analysis, it was determined that classical subgrid models (such as the Smagorin-
sky’s eddy viscosity model and the constant coefficient model for the subgrid kinetic energy) are
not able to reproduce accurately the subgrid stresses. On the other hand, dynamic models such as
the Germano’s dynamic model and a new dynamic model for the subgrid kinetic energy (Menon
et al., 1994; 1995) clearly showed superior ability to reproduce the subgrid stresses and the energy
transfer. More interestingly, the dynamic model for the subgrid kinetic energy appeared to have
the potential for modeling the subgrid terms accurately even when relatively coarse grids were
employed. Since the one equation model for the subgrid kinetic energy was chosen for simulating
high Reynolds number LES, this result was particularly encouraging. It is expected that for high
Reynolds number LES of complex flows, the grid resolution practically possible (due to resource
constraints) will be limited. Therefore, simple dissipative models (even with dynamic evalua-
tions) may not be sufficient for practical LES. In addition, the assumption of local equilibrium
between the production and dissipation of the kinetic energy (an assumption implicit in all alge-
braic eddy viscosity models) is violated (as shown in Kim and Menon, 1995a). It was therefore,
important that the ability of the kinetic energy model be demonstrated for high Reynolds number
flows. This was accomplished recently using simple flows but at relatively high Reynolds number
flows (e.g., Re; = 250) using very coarse grids (e.g., 327 ). These results are reported in Menon
and Kim (1995) and Kim and Menon (1995b).

A limitation of the Germano’s method was that some form of local or global averaging was
required to ensure stability of the simulation. This averaging was required due to the inherent defi-
ciencies of the Germano’s dynamic method such as the mathematical inconsistent derivation and
ill-conditioning problem of the dynamic formulation and the prolonged presence of negative
model coefficient. These limitations were removed by Carati et al. (1995) recently using a local-
ized model; however, their model required solution of the subgrid kinetic energy to constraint the
coefficient and furthermore, two additional equations had to be solved. The computational cost
was quite severe for this approach. The limitations with the Germano’s approach have been over-
come in the present formulation using a different approach based on local scale similarity and a
new truly local (in both time and space) evaluation of the coefficients has been constructed for the
one-equation subgrid model for the subgrid kinetic energy. Moreover, the new approach no longer
requires application of the Germano’s identity which was the cause of the ill-conditioning prob-
lem and, the localized model coefficients obtained from this model have been shown to be
Galilean-invariant and very realizable. In addition, the computational cost for the new model is
minimal compared to other techniques.The properties of this model has been studied by applying
it to various flows and comparing its prediction with DNS and experimentai data. It has been
shown that very high Re flows can be simulated relatively accurately using very coarse grids pro-
vided the scale-similarity requirements are satisfied. The predictions have also been compared to
the predictions using the Germano’s model (which is unstable without averaging) and the results
suggest that the proposed new local model is capable of predicting results using coarser grid and
without using any global or local averaging.
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3. DEVELOPMENT OF A METHOD FOR COMPLEX FLOWS WITH AND WITHOUT
CHEMICAL REACTIONS ON A NON-STAGGERED GRIDS

A new method for solving the time dependent Navier-Stokes equations has been recently devel-
oped using the low-Mach number approximation. The low Mach number approximation allows
the study of reacting flows where the effect of acoustics is negligible. This methodology was
developed to study complex flows with and without chemical reactions. The key feature of this
method is the non-staggered formulation (unlike the staggered methods) used within the frac-
tional step scheme. The non-staggered formulation was developed to address some fundamental
issues in LES modeling. For example, when staggered grids are employed, the flow velocity com-
ponents are defined at half-points that are not coincident. Thus, when filtering is carried out (spe-
cially for dynamic approach), the filtered variables are not at the same physical location. In the
past studies using staggered grids (e.g., Carati et al., 1995) this issue has been ignored. However,
it is not clear if this issue is not important for complex flows, specially when coarse grids are
employed. A non-staggered scheme is required to remove this problem. In addition to this capa-
bility another interesting feature of the non-staggered method is that it allows the same scheme to
work without any modifications for flow with and without chemical reactions. An implicit scheme
is used for time advancement and a multigrid solver is used to solve the Poisson equation for pres-
sure. The scheme has been validated for a variety of flows using both DNS and LES. The flows
studied so far include: (i) isotropic turbulence, (ii) temporal mixing layers with and without heat
release, (iii) plane Couette flow and (iv) laminar and turbulent round jets. The last two flows are
considered the building blocks for analyzing the subgrid models in flows with walls and in more
complex flows such as the turbulent, swirling free jet. Preliminary studies (reported in Chakra-
varty and Menon, 1995) show that the dissipation term in the subgrid kinetic energy needs to be
modified to handle flows near walls. A modification was devised and tested recently with apparent
success. Further study is underway to investigate the issue of local evaluation near walls.

These results are summarized in Chakravarty and Menon (1995) which is included as an Appen-
dix to this report.

4. PLANS FOR THE NEXT YEAR

The study carried out so far has established that the baseline local dynamic model can be used
without any modification for a variety of flow fields even when the Reynolds number is high. The
studies also showed that some modifications are required to handle flows with walls. However,
preliminary results in wall-bounded flows showed that the modification to the dissipation term is
required to develop a local subgrid model for wall-bounded flows. The validation of the local
model for wall bounded flows and for more complex flows will be the primary focus of the next
year’s work. Currently, four parallel research studies are underway to address these issues. These

studies are:

(a) Demonstration of the local subgrid model for rotating isotropic turbulence and rotating free
shear flows

This study is directed towards determining the behavior of the new subgrid model in flows
where external rotation is imposed. It is well known that with rotation, the energy transfer from




the large scales to the small scales is modified. An accurate subgrid model specially such as the
one currently being investigated (based on the subgrid kinetic energy) must adjust to the global
rotation imposed on the flow field. The behavior of the dissipation term in the subgrid model is
key to this adjustment. Therefore, this study is being carried out first using a rotating isotropic
field and then later with a rotating shear flow to investigate the modifications needed for simulat-
ing such flows using the new local subgrid model. This study should also provide guidelines
regarding the implementation of the LES approach to more complex flows such as the swirling

jets.
(b) Demonstration of the local subgrid model for wall bounded flows

Past study of Couette flow has shown that the current model is quite accurate; however,
there are some more issues that remains to be resolved such as: (i) the effect of grid stretching, (ii)
the effect of grid anisotropy (i.e., when the grid spacing is different in the spatial directions), and
the effect of filtering on the governing equations when the grid is highly stretched. These issues
has to be resolved for studies of complex wall-bounded flows where is grid stretching is manda-
tory and since, the resolution in the three spatial dimensions cannot be the same.

(c) Development of the next generation local subgrid models for more complex flows

For flows with large scale and unsteady separation such as flows past rearward facing
steps, application of the Germano’s algebraic model has shown good predictive capability. How-
ever, to achieve good agreement, relatively low Reynolds number flows were simulated using rel-
atively very high grid resolution. Both this limits are considered unacceptable for developing
practical LES methods for complex high Reynolds number flows. We have begun a new study of
the rearward facing step flow using the new subgrid model to study high Reynolds number flow
(Re = O(100000)) using practical grid resolution. Past calculations has shown reasonable agree-
ment for flow for Re = O(1000) but it is expected that even the present model will be unable to
simulate such flows accurately. Modifications to the dissipation terms are expected to improve the
model; however, some new thinking is required to handle such flows. A key issue to be addressed
is the behavior of the energy transfer in complex flows. Local and global backscatter needs to be
addressed in a more general manner than studied before. Anisotropic eddy viscosity concepts (i.e.,
eddy viscosity that is a function of spatial directions) are being investigated to improve the basic
method of representing the subgrid stresses in terms of an eddy viscosity model. We are also
exploring a new approach whereby the local energy transfer and subgrid stresses are modeled by
more complex non-linear closures which contains other terms in addition to the eddy viscosity
term.These issues will be investigated in the coming year.

(d) Application of local subgrid models for free jets with and without swirl

This study was initiated recently to study free jets using the current model. Preliminary
results are encouraging. This study will be extended to handle jets with swirl in the next year. The
study of rotating flows (case (b) above) should shed light on the modifications necessary to handle

such flows.
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On the properties of a localized dynamic subgrid-scale model for
| large-eddy simulations

Won-Wook Kim and Suresh Menon
School of Aerospace Engineering
Georgia Institute of Technology
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Abstract

A new dynamic model that provides localized (both in time and space) determination of the model
coefficients has been constructed with the base on the subgrid-scale kinetic energy equation model for
large-eddy simulations of turbulent flows. In this model, the deficiencies of Germano et al.'s dynamic
subgrid-scale model, such as the mathematically inconsistent derivation and ill-conditioning problem of
the dynamic formulation and the prolonged presence of negative model coefficient, have been
overcome. Moreover, the localized model coefficients obtained from this model are proved to be
Galilean-invariant and very realizable. The properties of the model have been studied by applying it to
large-eddy simulations of Taylor-Green vortex flow, and decaying and forced isotropic turbulence. The
results are compared to experiments, direct numerical simulations and large-eddy simulations using the
previously developed dynamic subgrid-scale models. Finally, it is demonstrated that the simplicity of the

proposed model makes it computationally very efficient.

1. Introduction

The dynamic subgrid-scale (SGS) model which was introduced by Germano et al. (1991) has been
successfully applied to various types of flow fields (Moin et al., 1991; Akselvoll & Moin, 1993;
Piomelli, 1993; Zang er al., 1993; El-Hady et al., 1994). Two desirable features make this model

especially attractive. First, the model coefficient is determined as a part of the solution, thus, removing




the major limitation of the conventional eddy-viscosity type SGS models (e.g., the Smagorinsky model)
which was the inability to parameterize accurately the unresolved SGS stresses in different turbulent
flows with a single universal constant. Second, as a result of the dynamic determination, the model
coefficient can become negative in certain regions of the flow field and, thus, appears to have the

capability to mimic backscatter of energy from the subgrid-scales to the resolved scales.

Although it has been shown that Germano et al.'s dynamic model is superior to the conventional fixed-
coefficient model, the dynamic procedure, as developed earliér, still has some deficiencies. These
deficiencies originate from a weakness of the Smagorinsky model used in Germano et al.'s dynamic
model, as well as, from the mathematically inconsistent derivation and the ill-conditioning of the
dynamic formulation itself. The Smagorinsky time-independent, algebraic eddy-viscosity model is
derived by assuming the equilibrium between the SGS energy production and dissipation. However, the
validity of this assumption in general turbulent flows is still questionable. Furthermore, in actual
implementation of the Smagorinsky model, the isotropic part of the SGS stress tensor (which is
equivalent to 2/3 of the SGS kinetic energy) is added to the pressure and treated as a pressure head
resulting in the grid-scale total pressure. Consequently, the velocity field is determined from the direct
influence of this grid-scale total pressure instead of the pressure alone (Yoshizawa & Horiuti, 1985).
These are considered to be limitations of the Smagorinsky model. Also, as noted by the original
authors, the dynamic model employing Germano et al.'s mathematical identity cannot guaraniee stable
numerical simulations. A popular approach to stabilize the simulations is spatial-averaging of the model
coefficient in directions of flow homogeneity. This has been quite successful in simple flows such as
isotropic turbulence. However, since complex flows do not possess any direction of flow homogeneity,
more complex local-averaging procedures are required and have been recently proposed (e.g., Zang et
al., 1993; Meneveau et al., 1994; Kim & Menon, 1995). Although good results have been
demonstrated using these methods, local-averaging approaches are still, in general, unacceptable
because averaging itself is carried out only to avoid numerical insmbility, and has nothing to do with the
dynamic procedure. Therefore, a truly robust dynamic model must be able to yield a stable and accurate

solution using local values of the model coefficients that vary both in time and space.




In this paper, a transport equation for the SGS kinetic energy incorporated with the dynamic procedure
has been investigated. The direct computation of the SGS kinetic energy implemented in the present
approach is expected to account for some local details of the flow structure and history effects of the
turbulence evolution. Also, this separately evaluated SGS kinetic energy makes it possible that the
velocity is determined directly from the pressure. To remove the mathematical inconsistency and the ill-
conditioning problem of Germano et al.’s dynamic formulation witl'wut employing spatial-averaging, a
pew localized dynamic formulation associated with the one-equation SGS model has been developed.
This model provides a straightforward localized determination of the model coefficients and does not
cause numerical instability. The properties of this model have been studied using data obtained from
experiments, direct numerical simulations (DNS), and large-eddy simulations (LES) of Taylor-Green
vortex flows, and decaying and forced isotropic turbulence. The localized dynamic SGS model is
developed for applications to LES of complex, high Reynolds number flows in arbitrary geometry.
Hence, studying this model in isotropic turbulent flows is not sufficient enough to fully demonstrate its
capabilities. However, successful prediction of simple turbulent flows is a necessary step toward model

validation because the simplicity of these flows makes it easy to study the properties of a model

thoroughly.

In section 2, various dynamic SGS models are described with the basic equations indicating their
advantages and limitations. Also, 2 new model that overcomes the deficiencies of the previously
developed dynamic models is introduced with some basic properﬁes being studied. In section 3, the
numerical methods employed in this study are described. In section 4, the new model is applied to

Taylor-Green vortex flow and decaying and force isotropic turbulence. Conclusions are presented in

section 5.




2. Subgrid-scale modeling

In physical space, the incompressible Navier-Stokes equations for LES are achieved by low-pass

filtering of a computational mesh (hence, the characteristic length of this filter is the grid width A)as

follows,
%::’_:_ - ' _ ' 1)
%If;wi‘j-g% = —5%(778,, + ta)+v-§z%-;; @
where Z,(x,,?) is the resolved velocity field and the SGS stress tensor T is defined as
T, = uu, — ;. ‘ 3

In order to close equations (1) and (2), one needs to model T, in terms of the resolved velocity field .
By decomposing the full scale velocity ¥, into the large scale quantity & and the small scale quantity u/,
T; can be shown to contain three components: the Leonard stress L Eiﬁ';—i,ij, the cross stress
C, =%, —Tu], and the SGS Reynolds stress K; = . In earlier studies (e.g., Moin & Kim, 1982),
the Leonard stress was calculated directly while the cross and SGS Reynolds stresses were typically
modeled. Speziale (1985) pointed out that the cross stress is not Galilean-invariant while the typical
models for this term are invariant and, hence, this approach of separating the exact SGS stress into
three components results in the LES equations of motion that are not Galilean-invariant. Consequently,

this approach cannot have general applicability since it is inconsistent with the basic physics of the
problem, which requires that the description of the turbulence be the same in all inertial frames of
reference. An alternate approach, which is properly invariant, is modeling t; as a whole. This approach

is adopted in this study.




Eddy-viscosity models assume proportionality between the anisotropic part of the SGS stress tensor

7, —18,7, and the resolved scale strain rate tensor S;

T —'}8,71,,, = —2VT-S:~,~ ) A ' )

where v, is the eddy viscosity and

s 1,5
5= Z(ij+ ax,.)' .

Simple dimensional arguments suggest that the eddy viscosity v, should be given by the product of a

velocity scale and a length scale. In LES, the length scale is usually related to the filter size (A),

however, various models differ in their prescription for the velocity scale which can be estimated from

the smallest resolved scales. In the Smagorinsky model, an algebraically described velocity scale is

obtained by assuming that an equilibrium exists between energy production and dissipation in the small

scales. One-equation SGS model (Schumann, 1975; Yoshizawa & Horiuti, 1985; Menon et al., 1994)

solves a transport equation for the SGS kinetic energy to provide the velocity scale.

forms as used for Reynolds-
are often called similarity

The eddy-viscosity models for spatial-filtered LES have almost the same

averaged Navier-Stokes computations. Another class of SGS models, which

models, has also been developed (Bardina et al., 1980; Liu et al., 1994). These models assume the

similarity of turbulent stresses in consecutive scales or resolutions (e.g., similarity between the smallest

resolved scale stress and the largest unresolved SGS stress). Although these models reproduce the

structure of the SGS stress rather well, they do not dissipate sufficient energy and must be combined

with the eddy-viscosity model in order to have all of the desired properties. The resulting models are

usually called the mixed models. In the mixed models, the major role of the similarity part is to cause

backscattering of SGS energy (Horiuti, 1989).
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Dynamic SGS models have recently received the most attention. This type of SGS models uses the
eddy-viscosity model as a base model and incorporates the similarity concept to dynamically determine
the model coefficients. To date, two typical dynamic models have been suggested. One is a dynamic
algebraic SGS model (Germano et al., 1991) which is incorporated with the Smagoﬁnsky model, and
the other is a dynamic one-equation SGS model (Ghosal et al., 1995; Kim and Menon, 1995) based on

the SGS kinetic energy.

This paper is restricted to the study of the dynamic SGS models (see Menon et al., 1994 for a detailed
study of the eddy-viscosity and similarity models).

2.1. Dynamic Algebraic Subgrid-Scale (DASGS) Model

The simplest model which predicts the global energy transfer with acceptable accuracy is the algebraic

eddy-viscosity model originally proposed by Smagorinsky (1963):

1, =~2¢, A*[S]5; +38,7. (6)

where the model coefficient ¢, is equivalent to the square of the Smagorinsky constant and
|§l=(2§‘,'§“){r In classical approach, ¢, requires adjustment for different flows. A large number of

studies have been devoted to fine-tuning c, for various flows of interest. This problem was
circumvented by using a dynamic procedure (Germano et al., 1991) which implements a direct
evaluation of c,. In the dynamic modeling approach, a mathematical identity between the SGS stresses
resolved at the grid filter level characterized by A and the test filter characterized by A (typically,
A=27) is used to determine the model coefficient c,. Piomelli e al. (1988) showed that the proper
choice of filter is essential to maintain model consistency for conven‘tional SGS models. Furthermore,
the nature of the test filter should be similar td that of the grid filter to conserve the similarity of the
SGS stresses defined on these two filter levels. Various types of filtering operations have been studied,

such as, top-hat, Gaussian, and Fourier cut-off. In the present study, we employ the top-hat filter for
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the test filtering which is considered appropriate for finite-difference methods in physical space. Thus, if

the application of the test filter on any variable ¢ is denoted by & or <¢>, it can be shown that,
L, =T, - %, =(ai;) - ui;. | )

where

T, = (uu; ) - u; . @)

is the SGS stress tensor defined at the test filter level. Assuming self-similarity of the subgrid-scale

stresses, one can model 7; in the same way as T;:

T, =-2¢, A

515, +48,T.. ©)

Combining (6), (7), and (9), an equation for c, can be obtained;

L, -48,L, =2¢, M, (10)

where

M, =_(&|§l§'? _E(m:sj.j)). S oan

Equation (10) is a set of five independent equations for one unknown c,. To minimize the error that
can occur solving this over-determined system, Lilly (1992) proposed a least-squére method which

yields

Ca 1LM (12)

While Germano et al.’s dynamic model has been used successfully, some drawbacks are worth noting.
First, in spite of a large spatial variation of the model coefficient, it is taken out of the spatial-filtering
operation, as shown in (10), as if it were a constant in space. Local values of the model coefﬁcient asa

function of space are then sought. This mathematical ipconsistency decreases the accuracy of the
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dynamic model. Second, the resulting equation (12) for ¢, is ill-conditioned because the denominator of
this expression (i.e. M;) comes from the algebraic manipulation of two base models defined at different

filtering levels and, hence, it can become very small causing numerical instability. These two drawbacks
are directly related to Germano ef al.’s mathematical identity (7). The final drawback is the prolonged

occurrence of negative model coefficient in some locations of the flow field which has also been known
to cause numerical instability (Lund et al., 1993). This drawback appears to result from the nature of

the Smagorinsky model used as a base model in Germano et al.'s dynamic formulation.

In this paper, we refer to Germano ez al.'s dynamic formulation incorporated with the Smagorinsky
algebraic model as the dynamic algebraic subgrid-scale (DASGS) model.

2.2. Dynamic k-Equation Subgrid-Scale (DKSGS) Model
A one-equation model for the sub grid-scale kinetic energy,
K, =4(2 -2), (13)

58S i

in the following form (e.g. Yoshizawa, 1993),

ok ok oF, o (. ok
i = = & 14
ot T ox; % ox; et ox, (vr ox; ) 14

has been studied recently (Menon & Yeung, 1994; Menon et al., 1994). Here, the three terms on the
right-hand-side of (14) represent, respectively, the production, dissipation and diffusion of k. In the

model of the diffusion term, the direct effect of v has been dropped. In the original model of this term,

vy /G, is used in place of v;. However, since o, =1 is usvally adopted (Bradshaw et al., 1981;

Yoshizawa, 1993), 6, has been dropped from (14). Note that the dynamic procedure might need to be

used to determine o, (or a diffusion model coefficient defined in different way such as in appendix A).

It is especially expected that the dynamic procedure for o, (or a diffusion model coefficient) is




worthwhile in the flow where the diffusion term becomes important, such as, in jets and wakes, and in

the vicinity of walls in channel and boundary layer flows. This dynainic formulation of a diffusion model
coefficient is presented in appendix A. The SGS stress tensor T; is modeled in terms of the SGS eddy

viscosity v, and k,,, as:

T = —2v;S; + 33k, (15)
where )
v, =k A - (16)

Here, c, is an adjustable coefficient that is determined dynamically, as shown below. As shown in (16),
vy, has the form which is used in a standard one-equation model for Reynolds-averaged Navier-Stokes

computations. Equation (14) is closed by providing a model for the dissipation rate term, €. Using

simple scaling arguments, € is usually modeled as

J%;
e= ce-%’- amn

where, c, is another coefficient that is also obtained dynamically. An important feature of this model is

that no assumption of the equilibrium between the SGS energy production and dissipation has been

made. Moreover, the direct evaluation of the SGS kinetic energy implemented in this model allows the

velocity to be directly determined from the pressure (i.e., the pressure and the velocity are directly

coupled) unlike in the Smagorinsky model where the velocity is determined by the grid-scale total

pressure which includes both the pressure and the isotropic part of the SGS stress (Yoshizawa &

Horiuti, 1985).

The dynamic modeling method is applied to the k-equation subgrid-scale model to obtain appropriate

values of the coefficients c, and c,. To implement this method, the SGS kinetic energy at the test filter

jevel is obtained from the trace of (7);
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K=L,12+k,,. | (18)

Using a procedure similar to that outlined in Section 2.1, an equation for ¢, can be derived,

L, -43,L, =2¢,N, (19)
where A
N, =-(AK5,-B(L5,)). 20)

Since (19) has the same form as (10), c, can be determined in a similar manner using the least-square

method which yields

N..
c, =l.£“z_L 1)
2 N;N; ’

A mathematical identity similar to (7) between the dissipation rate resolved at the grid filter level, €,

and the test filter level, E, can be obtained as;

. ou o \ ou; o,
= -_f = i (I . (] (] 22
F=E-¢ ‘{<ax, ax,.> s, ax,.] @
where
ou. du. Ou, ou,
=y L 23
& V(ax,ax, ax,.ax,.) 3)
AN |
=l (LY S, 24
E ‘{<ax,. ax,.> ox; ax,.] @4

This identity is used to evaluate the dissipation rate model coefficient ¢, by employing the model for €,

(17), and the similar model for E at the test filter level;

~{i4)




Note that (25) is a scalar equation for a single unknown and, hence, an exact value ¢, can be obtained

without applying any approximation.

In this type of dynamic formulation, Germano et al's mathematical identity and its variant (22) are still
adopted. Hence, the mathematical inconsistent derivation and the ill-conditioning problem remain. The

advantage of this model is that by introducing the k-equation SGS model as a base model for the

dynamic formulation, the prolonged presence of negative model coefficient (i.e., c,) is no longer the
source of numerical instability. Unfortunately, however, this formulation does generate another
drawback by introducing the identity (22). That is, the equation (25) for ¢, has the unphysical property
of vanishing at high Reynolds numbers. This is due to the fact that the effective viscosity for E in (24) is
not the same as the molecular viscosity for € in (23). Since E is the dissipation characterized by a larger
scale than the characteristic scale ofe, the effective viscosity for E should include the energy transfer
(to the smaller scale) at that larger scale. Furthermore, the scale separatién between E and € increases
as Reynolds number increases. Thus, as Reynolds number increases, the modeled .expression for E,
(24), becomes worse, resulting in poor prediction of the coefficient ¢, and, hence, the actual dissipation
€. To resolve this problem, the molecular viscosity in (24) should be replaced by the effective viscosity
for E which is larger than the molecular viscosity. However, deriving an expression for the effective

viscosity is not possible due to a lack of information on the characteristic scale of the test-filter-level

SGS kinetic energy dissipation.
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2.3 Localized Dynamic k-Equation Subgrid-Scale ( LDKSGS) Model

As explained in the preceding sections, the dynamic formulations using Germano et al.'s mathematical

identity suffer from numerical instability caused by the ill-conditioned expression for model coefficient
locations in the computational

for the model

and by the prolonged presence of negative model coefficient at some

domain. This problem has been circumvented by spatial-averaging the expression

coefficient in directions of flow homogeneity (e.g., Germano ef al., 1991; Moin et al., 1991). Recently,

Meneveau et al. (1994) suggested a Lagrangian-averaging scheme applied along particle trajectories

rather than directions of homogeneity. This model is based on the hypothesis that the SGS model

coefficient at a given point should depend in some way on the history of the flow along the trajectory

leading to that point because turbulent eddies are expected to evolve along this pathline. This model
was tested in homogeneous and channel turbulent flows. In homogeneous flows, the results were as
model; while in channel flows, the predictions were superior to

It was reported that this model required

good as the volume- -averaged dynamic

those of the conventional plane-averaged dynamic model.

about 10% more computational time than the conventional spatial-averaged dynamic model. Kim &

Menon (1995) also developed a simple local-averaging scheme which is based on the assumption that

the main dynamic mechanism determining the local property of the turbulent flow occurs inside local

structures. These local structures were defined in terms of vorticity since turbulent ﬂow is characterized

by three-dimensional vorticity fluctuations caused by both the large scale and the small scale eddies.
They obtained slightly better results than the volume-averaged dynamic model in the simulation of

Taylor-Green vortex flows and demonstrated the potential of the scheme for application to complex

flows.

Although the local- averaged dynamic models might lead to accurate results and have the potential for

application to complex flows, the concept of Jocal-averaging (whether based on local structures or

artifact that is employed pn_manly to control the numerical

f any averaging method necessarily accompany with

along particle trajectories) is still an

instability. Furthermore, since the implementation 0

it an ambiguity in choosing the domain over which averaging is to be applied, the local-averaging

method is inconsistent with the dynamic procedure which is attempting to adjust the model without any




ambiguity. A true dynamic model should evaluate the model coefficients locally without any ad hoc
averaging. In the following, we describe two different localized dynamic models that do not employ

(nor require) any form of averaging.

Ghosal et al. (1995) developed the dynamic localization model based on the SGS kinetic energy,
DLM(k), which is applicable to inhomogeneous flows. This model introduces a variational formulation
to rigorously derive integral equations for the model coefficient as a function of position and time and is
mathematically consistent. Also, by solving the integral equations iteratively, the numerical instability
resulting from the ill-conditioning problem was effectively prevented (note that, since this model used
the SGS kinetic energy equation as a base model, the prolonged presence of negative model coefficient
is not a source for numerical instability). However, this was achieved at an additional price (Carati et al.
(1995) reported that DLM(k) required 67% more CPU time than the standard Smagorinsky model
while the conventional spatial-averaged dynamic model spent 4% more CPU time) due to the
complicated and expensive procedure required to solve two more integral equations iteratively, as well
as, one transport equation. This model has been tested in isotropic turbulence and in the flow over a

backward-facing step and demonstrated its capability by showing a good agreement with experiments

for both cases.

In this study, we propose a simpler, mathematically consistent, and numerically stable formulation of
localized dynamic model. Before describing this model, some characteristic scales and flow properties
at the grid and test filter levels need to be defined as shown in table 1. The following discussion will
attempt to demonstrate the features of the new model using reasoning based in physical space (rather
than in spectral space). At the grid filter level, there are two energy levels characterized by Zu_, and -‘17,47,.
(the factor J is neglected in the following discussion for brevity). The SGS kinetic energy k,,, is then
determined by the difference between these two energy levels, i.e., 2k,, =uu; — &y, Since the energy
%z, is resolved at the grid filter level, the only meaningful length scale chAracteﬁzing this energy level is
the grid resolution A . However, the characteristic length scale (say I’) for the energy level 3,7, is

unknown. Since uy, > &, it can be deduced that the characteristic length scale for uu, lies in the

unresolved range of scales (ie., I'<A). It is also known that the length scale characterizing the
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production of the SGS kinetic energy is much larger than the length scale characterizing the dissipation

of the SGS kinetic energy and, hence, it is reasonable to state that the length scale characterizing the

_ production of the SGS kinetic energy is A while I’ represents a characteristic length scale for the

dissipation of the SGS kinetic energy. The separation between the scales where the SGS kinetic energy
is produced and where it is dissipated explains why the model for € (= k% IB) is poor (ie., the
dissipation model uses A as a length scale, which is inappropriate). To properly model the production
and the dissipation of the SGS kinetic energy, it is necessary to have additional information on the
energy transfers at these two length scales. However, the information on the energy transfer
characterized by the smaller scale (e.g., dissipation by the molecular viscosity) is not available.
Therefore, an additional assumption (similar to that used in the Reynolds-averaged Navier-Stokes
turbulence models) that the energy transfer which occurs at the smaller scale is essentially controlled by
the energy transfer at the larger scale and the energy determined by both energy transfers (e.g. k) i8
required. Finally, the length scale and the strain rate tensor (to parameterize the energy transfer) of the
larger scale, and the energy determined by both energy transfers are sufficient to model not only the
production rate of the SGS kinetic energy (or the SGS stress tensor on which the SGS kinetic energy

production depends, e.g., the production rate of k,,, = —tﬁﬁ) but also the dissipation rate of the SGS

kinetic energy.

The definitions and relations employed at the grid filter level can be extended to the test filter level as
long as the scales are defined in a similar manner. The energy level iz, is resolved at the test filter level
and characterized by A =2A whereas the characteristic length scale (say I™) for the energy (h_,u—,) is
unknown, and again (i) > i; and I” <24. However, at the test filter level, an additional scale can
be defined. Since the SGS kinetic energy, 2k, =wuu, — i, is obtained by filtering the total turbulent
energy uu, at the grid filter level, a (similarly defined) energy at the test filter level, (@) — i,

obtained by applying the test filter to &i,. This energy is dissipated at the scale characterized by the
energy level (%) while being produced at the characteristic length scale A =24 which corresponds to
the energy level #,, since (&7,) > #;. However, since this dissipative scale lies in the resolved range

of scales, the energy is dissipated due to the SGS eddy viscosity as well as the molecular v1scosxty

Therefore, the effective viscosity for the dissipation of the energy (77, ) -, is (V+ V7).



Using the assumption and the parameters defined above, we obtain three different SGS stress tensors

and dissipation rates. One is at the grid filter level and the other two are at the test filter level:

the SGS stress tensor at the grid filter level,

—

T. = uiu.-ﬂ‘.ﬁ.
T (262)

e[ (i -7 5+ 38, o -]

the SGS stress tensors at the test filter level,

1; = (uiuj>—’xzﬁ'j (26b)
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the dissipation rate at the grid filter level,

. fEmE ma
ox; 0x; ox; 0x; (27a)

o[ -7m)] [

the dissipation rates at the test filter level,

E =V .?.l.‘.'..a_l."- -a_ﬁ'-é_ﬁ.'_ ,
0x; 0x; ox; ox; | (27b)

o [3{(m)-22)] /&




F

_ ou, Ju; g_ﬁ_&@
e = V4V T)[<3 Bx> 0x; ax,.], ' (27¢)

c [i((it’,.u,.) - u,.u,. ]i / A

As long as both the grid and the test filter levels are located in the range where the similarity

assumption is valid, ¢, and c, in (26) and (27) remain the same. Note that (26a) and (27a) represent,

respectively, the actual SGS stress tensor and the dissipation rate which must be modeled. These two
expressions contain the two unknown model coefficients ¢, and c,. Previously (see section 2.2) the
expressions for T; and E, (26b) and (27b), were adopted to dynamically determine these unknowns.

au 9y, > Therefore, to close

However, this procedure introduced additional unknowns, (Eu- ) and <
ox; ox;

the model, the other independent relations (e.g. Germano ef al.’s mathematical identity, (7), and its
variant, (22)) were needed. These additionally introduced relations become the source of both the

mathematical inconsistency and the ill-conditioning problems. In this study, we adopt the expressions
for r; and e, (26¢) and (27¢), (which do not contain any additional unknowns) instead of T; and E,

respectively. Therefore, Germano et al's mathematical identity and its variant are no longer needed to

close the model. Both ¢, and ¢, can be determined in the same manner as was done earlier for ¢, and ¢,

(in section 2.2). Thus,

¢ %é% . (28)
where

o, =-A[4((zm)-22)] S, 29
and

(30)

As shown above, no mathematically inconsistent procedure is involved in this dynamic formulation.

Furthermore, the denominators of (28) and (30) contain the energy information within the resolved




scale which is well-defined (note that in (12), (21), and (25), the denominators contain algebraically

manipulated parameters, hence, the resulting expressions can not be well-defined). Therefore, the ill-

. conditioning problem (observed in the dynamic models using Germano et al.'s mathematical identity) is

not considered serious here. Furthermore, the expression for c,, (30), does not have the unphysical
property of vanishing at high Reynolds numbers unlike (25) since the effective viscosity (v+V;) is used
instead of just v. The existence of the similarity between the SGS stress wu, —i; and the resolved
stress (ﬁ,ﬁ,)-ﬁﬁ, is supported by Liu et al.'s (1994) analysis of experimental data in the far field of a
round jet at a reasonably high Reynolds number (Re, =~ 310). In their work, a high correlation between

the two stresses is obtained. Therefore, the basic assumption of the proposed localized model has some
validity from experimental observation. The proposed LDKSGS model can be in a more general form if
the dynamic procedure is applied to the diffusion model. This dynamic formulation is presented in
appendix A. Finally, the computational cost of the LDKSGS model was evaluated and compared to the
cost of the volume-averaged DKSGS and DASGS models in the simulations of Taylor-Green vortex
flow (the detailed description of this flow will be presented in section 4.1). It was observed that 10
reach the same (physical) time level, the LDKSGS model required the same computational efforts as the
volume-averaged DASGS model, while the volume-averaged DKSGS model required 40% more
computational cost than the volume-averaged DASGS model. The simplicity of the dynamic
formulation in the LDKSGS model (it can be easily observed that both the volume-averaged DKSGS
and DASGS models need much more information to determine the model coefficients than the

LDKSGS requires) appears to compensate for the additional expenSe involved in the solution procedure

of the SGS kinetic energy transport equation.




2.4 Basic Properties of LDKSGS Model

Before applying the LDKSGS model to various flow fields of interest, it is worthwhile to examine the

basic properties of the model from a theoretical point of view. Recently, Vreman et al. (1994) argued
that SGS models should share some basic properties with the exact SGS stress T; t0 successfully

predict this unresolved quantity. They presented three properties of T; that SGS models should fulfill as
a necessary condition. First, T; is a symmetric tensor, therefore, the model of T; should be symmetric.
Second, the filtered Navier-Stokes equations are Galilean-invariant. They should retain this property
even after T; is replaced by the model. Finally, the property that T; is positive for positive filters (i.e.,

the filter kernel is positive over the domain applied) must be satisfied. Therefore, the model for T; is

required to be positive as well, if positive filter is employed. Actually, the first requirement is true for all
existing SGS models. However, the latter two requirements need to be checked especially when a new

SGS model is being considered. The ability of the proposed LDKSGS model to satisfy these

requirements is discussed below.

The Navier-Stokes equations, as well as their filtered LES form (2), exhibit Galilean-invariance. As
Speziale (1985) has argued, the SGS stress must be modeled with terms which are Galilean-invariant so
that the resulting LES equations of motion for the large eddies retain the same form in all inertial frames
of reference. In other words, the proposed SGS model should be properly Galilean-invariant, otherwise,
the model loses its general applicability. The Galilean-invariance of the SGS model can be examined by

employing the following transformations,

-~

X =x+Ut+C (31a)
=t (31b)

where U and C are any constant vectors. This transformation yields a frame of reference in which the

motion differs by a constant translational velocity. Hence, if x, constitutes an inertial frames of

reference, then x will represent the class of inertial frames of reference. By differentiating (31) we

obtain




¢=W+U (32a)
o 0

'a—x'i.--—-a—xj (32b)
0 O d

L _U _y—. 32
or or ’'dx (32¢)

Substituting (32a) into the definition of the SGS kinetic energy (13), we derive k;, =k,,. Since U is

constant, the strain rate tensor .'S"v is invariant. Consequently, it is clear that the models for 1, (26a),

and for €, (27a), are invariant. The direct substitution of these results and (32) into (14) yields,

a&:g‘ -—— ak;&:~ - L ] az - a L] -aﬁ:ls-
5 e T Niar © Tox (V’ ax,.') (33)

and, hence, the SGS kinetic energy equation, (14), is Galilean-invariant. This analysis can be extended

to the test filter level to show that the trace (iﬁ,)-fiﬂ'j, the test-filter-level strain rate tensor S;, #; in
(26¢), and e in (27c) are all Galilean-invariant. Finally, by direct substitution of these results, it can be

shown that

c =c (34a)
c. =c,. (34b)

Vreman et al. (1994) have shown that the realizability conditions for the Reynolds stress in the
statistical approach are also valid for the SGS stress T; in the spatial-filtering approach. They proved

that the tensor T; forms a Grammian matrix which is always positive semidefinite. Hence, T; is poSitive

semidefinite and the realizability conditions given by the following inequalities hold,

(35a)
(35b)




However, this proof is only valid if positive filters such as the top-hat or Gaussian filters are employed.
If the spectral cut-off filter is applied, this proof does not hold. (It is worthwhile to note here that in the

dynamic SGS modeling approach, grid-filtering is usually implemented by the low-pass filter of a
computational mesh which is believed to be a‘positive filter, therefore, the resulting SGS stress T; is

positive. In this case, if the spectral cut-off filter is used for test-filtering, the SGS stress at the test filter

level can locally be negative. Therefore, the dynamic SGS modeling approach loses its consistency.)
The use of the low-pass filter of a computational mesh makes 1, positive and, hence, it is consistent to

require that the model of T; should be positive as well. In the LDKSGS modeling approach, the base

model (i.e., the SGS kinetic energy equation model) is formulated in such a way that the SGS kinetic
energy remains positive during the simulation. This was briefly proved by Ghosal et al. (1995). Thus,
this base model for the LDKSGS formulation is realizable. The key question that remains to be
answered here is that whether the dynamically determined model coefficients are reliable enough to
guarantee that the model for T; satisfies the realizability conditions expressed by the two inequalities in
(35). The first inequality (35a) expresses the realizability condition for the diagonal elements of the
stress. Therefore, this inequality is not sufficient to demonstrate a complete realizability condition.

Including the second inequality provides a more general set of the realizability conditions. (Note that
one may need other inequalities such as det(t;)20 to complete the set of realizability conditions.)

These inequalities give upper and lower bounds for the model coefficient. We will first examine the

inequality in (352). By rewriting (26a) for the diagonal elements of 7,, we obtain

1. =-2cAKE S, +3k,, (36)
where a = {l,m,n} and 5, denote the eigenvalues of the strain rate tensor which are assumed to have
an arrangement of S, 2 5,,, 25, (here, repeated indices (0, II, mm, and nn) are used to indicate the
eigenvalues of the strain rate tensor, therefore, the summation rule is not implied) for convenience.

Furthermore, the signs of these eigenvalues of the strain rate”tensor are determined from ‘the
incompressibility condition (5, +5_+5,=0) so that the largest eigenvalue 5,20, the smallest

eigenvalue S, <0, and S, can have either sign. The direct substitution of these results into the first

realizability condition (35a) gives the following condition:
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K K
— <c < i o (37 )
3AS,, 3AS,

where S, has negative sign and, hence, the lower bound is also negative. This condition implies the

realizability of the diagonal elements of the SGS stress model (i.e., consequently, the positivity of the
SGS kinetic energy). However, it does not automatically imply that the off-diagonal elements of the
SGS stress model are also realizable. Another expression of upper and lower bounds for ¢, which

includes the off-diagonal elements is obtained by substituting (15) into the second realizability condition
(35b) (for generality, the sum of all three off-diagonal elements is considered),

V(G2 + 52+ 5) S VG5, + 5,5+ S0+ 5K (38)
This expression can be rewritten using a simple algebraic treatment as follows,
VE(S2+83+52)<- 1 +52+5 Y~k ‘ (39)
r\*12 23 31 2 T ll 22 33 3 cg:

Combining the terms which contain the strain rate tensor and substituting the definition |§| = (23".0.3".,,.)”

yields
88s*

vifsT < —k’ (40)

Finally, the upper and the lower bounds for c, are obtained by the substitution of the definition for v,:

2 k 2 K
— ‘i S S & . 41
B T AiS’:l @10

The two conditions, (37) and (41), give the realizable range for the dynamically determined model
coefficient c,. The model coefficient c, should, therefore, fall inside this range for the LDKSGS model
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to become a realizable model of the SGS stress. Unfortunately, it is difficult to analytically prove that
these realizability conditions hold for the LDKSGS model. Numerical experiments are the only feasible
way to prove these realizability conditions. Decaying isotropic turbulence (the detailed description of
this flow field will be presented in the section 4.2) is used for the numerical verification. It is observed
that more than 99.9% (for the 48° grid resolution), 99.8% (for the 32° grid resolution), and 99.6% (for
the 24° grid resolution) of the grid points satisfy both the realizability conditions, (37) and (41), at the
same time during the entire simulation. Therefore, it can be said that the LDKSGS model satisfies the
realizability conditions even in a strict sense. However, this statement may not be true for other types of
flow fields, especially, when the model is applied to complex; high Reynolds number flows. In that case,
it is recommended that both the xealizability conditions given by (37) and (41) be adopted as constraints
for the dynamically determined model coefficient. This will ensure a more realizable and stable
implementation of the dynamic model. Ghosal et al. (1995) reported that the DLM(k) model satisfies
the realizability condition at about 95% of the grid points for the simulation of decaying isotropic
trbulence using a 48* grid resolution. Thus, it appears that, unlike the present LDKSGS model, the
DLM(k) is not quite realizable even for a simple isotropic turbulence. Furthermore, to examine the
realizability, they used only the condition (37). According to our numerical experiments, the satisfaction
of the condition (37) does not automatically guarantee the satisfaction of the condition (41). For

definite realizability, both conditions, (37) and (41), should be used for accurate verification.

3. Numerical method

To date, most reliable simulations of turbulent flows have been performed using spectral methods
because of their extremely high accuracy. However, spectral methods are relatively complicated and,
moreover, they cannot be used for simulations of flows in complex geometry. For complex flows,
numerical methods defined in the physical space like finite-difference methods (FDM) and finite-volume
methods (FVM) are more appropriate. The major shortcoming of }these physical space methods is that
their accuracy is inadequate for turbﬁlence simulations. Rai and Moin (1991) suggested a high-order
accurate, upwind-biased finite-difference method as a good candidate f(;:r highly accurate simulatibns of

turbulent flows associated with complex geometry. Their approach used a non-conservative form of the




unsteady, incompressible Navier-Stokes equations, (1) and (2), and, hence, it is appropriate only for

simulations of flow fields without discontinuities (i.e., it can be applied t0 simulations of most

ressible flow fields and some compressible flow fields which do not include eddy-shocklets). The

incomp
a similar methodology is adopted here. Similar to

present study is limited to such flows and, therefore,
Rai and Moin (1991), the convective terms are approximated using fifth-order-accurate, upwind-biased

example, the first term in the u-momentum equation,

finite-differences with a seven-point stencil. For
'is dropped for simplicity);

du is evaluated as (in the following, the filtering operator -

e, ) g = (), (6 (Wi + 600D+ 40W)y o w2
12004y + 30054 = 4()is ) 1208

if (u);ja >0, and

()2 = (“)i.jx(4(“)s+3.j,t =30(u)iszju + 120(u)41,j (42b)
= 40(u);;, -60(u),_1#+6(u),-_2“)/120A :

if (u),;,<0, on a uniform grid. Here, subscript x indicates differentiation with respect to x. The

remaining convective terms are evaluated in a similar manner. The viscous terms are computed using

central differences. By applying the fourth-order-accurate, half-points differencing, the first viscous

. . uy .. 4 .
term in the u-momentum equauon, —a—(v-é—) is discretized as
x\ ox

(Vi ), )iju = (Vs Yiarzja + 27V, dinnjx @)
=27V, iansx (V“x)i-m.j.t) 124A°

Also, u, which is defined at the half-points is computed using the same fourth-order-accurate finite-

difference given as

W innja = (~(Wiz et 27(W)injx
. 44
- 27(“),',,'* + (“)i-lJJ:)/ 24A (44) .




As shown, the discretization of the viscous terms (the second derivatives) uses seven grid points, hence,
the viscous terms are approximated to sixth-order accuracy on uniform grids. The physical time

derivatives in the momentum equations are differenced using a second-order backward-difference
formula,

3™ — 4" +u™

AT =-Res(u™) (45)

where the superscript n denotes the guantities at the physical time level n and 'Res' represents the

residual in the momentum equations. Note that, in this study, a non-staggered grid is used with the

velocities and the pressure defined at the grid points.

For incompressible flows, the continuity equation (Qu,/9x,=0) is essentially a time independent
velocity constraint imposed on the momentum equations. This means that the system of incompressible
Navier-Stokes equations possesses a singularity in time which makes the well-developed methods for
the computation of compressible flows inefficient for the incompressible case. This singularity is
removed in the present study by introducing the method of artificial compressibility, originally proposed

by Chorin (1967). In this approach, a pseudo-time derivative of the pressure is added to the continuity

equation making the resulting equation hyperbolic,

'Bl’%%%:o (46)

where P is a prescribed parameter, which correspond to an artificial speed of sound, with a typical
value of 5 to 10 as used by many researchers and 7 is the pseudo-time variable which is not related to
the physical time ¢. The time-accurate solution capability is obtained by adding pseudo-time velocity

derivatives to the momentum equations (e.g., Rogers et al., 1991). In this unsteady formulation, the

governing equations are marched in the pseudo-time (i.e., subiterated) until the divergence-free flow
field is obtained. Therefore, the artificial compressibility does not corrupt the physical time solution as

long as the pseudo-time solution converges (o a steady state at each physical time level.




The integration in the pseudo-time is carried out by an explicit method based on a Runge-Kutta time-
stepping scheme. A 5-stage scheme was employed with the coefficients (0.059, 0.145, 0.273, 0.5, 1.0).
Local time-stepping (in the pseudo-time), determined by the local stability limit, is also adopted to
accelerate the convergence to a steady-state solution. A significant improvement in convergence is
achieved by incorporating the full approximation scheme (FAS) multigrid method proposed by Brandt
(1981). Details of the multigrid algorithm is given by Brandt (1981) and is omitted here for brevity.

In practice, a solution is considered converged if the root-mean-square of the pressure and velocity
changes decrease less than 10~ since, in most cases, further iterations to reduce these quantities do not
noticeably change the solution. Both the eddy viscosity and the model coefficients are computed at each

péeudo-time step. Usually, the model coefficients adjust themselves quickly and remain almost constant

during pseudo-time iterations.

The code used in this study was validated earlier (Menon and Yeung, 1994) by carrying out direct
numerical simulations of decaying isotropic turbulence and comparing the resulting statistics with the
predictions of a well-known pseudo-spectral code (Rogallo, 1981). Further validation of this code is

demonstrated in this paper by comparison with experiments as shown in section 42.




4. Results and Discussion

The proposed LDKSGS model has been applied to Taylor-Green vortex flow (section 4.1), aﬁd

decaying (section 4.2) and forced (section 4.3) isotropic turbulence. Due to their inherent simplicity,

these flows are considered necessary test flows where the properties of the SGS models can be

investigated in detail. The behavior of the LDKSGS model near solid walls and for anisotropic grids is
currently being investigated and will be reported in the near future.

4.1. Taylor-Green vortex flow

To investigate the properties of SGS models, one popular approach is to compare the predicted LES
results with the results of DNS predictions. However, since DNS require a significant amount of

computer resources (both memory and execution time), it can be applied only to a limited low range of

Reynolds numbers. This Reynolds number range can be increased by simulating a flow that has spatial

symmetries (which are preserved in time as the flow evolves), because the information in a fractional

part of the periodic box is sufficient to describe the whole flow field using these symmetries. This idea

was exploited by Brachet et al. (1983) who simulated a Taylor-Green vortex flow and reduced the

necessary memory by 1/64 compared to that required for a general non-symmetric périodic flow. In this

study, simulation in the so-called impermeable box (0< x,y,z< n) of the Taylor-Green vortex flow is

carried out. The flow field develops from the initial condition,

u = sin(x)cos(y)cos(z)
v =—cos(x)sin(y)cos(z).
w=0

47)

At time ¢ =0, the flow is two-dimensional but becomes three-dimensional for all times ¢ > 0. This flow

is considered a simple flow field in which the generation of small scales and the resulting turbulenc'e.can

be studied.




In this study, an effectively 128" DNS in a 2x-box (actually simulated using the 64> grid resolution in a
x-box) has been carried out. The results are then used to evaluate LES predictions (obtained using
coarse grid resolutions). Figure 1 shows the unscaled energy and dissipation spectra of the 128> DNS

data at £=29. At this time, turbulence is well developed and no energy is left in the range of
wavenumbers k < 1. The Taylor microscale Reynolds number Re, is approximately 32. We obtain a

value of about 1.5 for the Kolmogorov constant, C, . This valve of C isina good agreement with the
value obtained from experiments at high Reynolds number (Monin and Yaglom, 1975), however, itisa
smaller than the values determined directly from spectra in the high resolution DNS (e.g., Vincent and

' Meneguizzi, 1991) which estimate C, to be around 2. In the range of wave numbers k <10, the energy

spectrum conforms to the inertial k¥ law with the dissipation spectrum having a peak at k =10. At this
resolution and for the chosen molecular viscosity v=0.001, the energy containing range and the
dissipation range héve a significant overlap (at very high Reynolds number, the energy and dissipation
range should be widely separated). However, the present result is similar to the results of Domaradzki
et al. (1993) which was obtained at Re, =70. Therefore, the Reynolds number used in the present
simulation belongs to the range where the Reynolds number is just high enough to capture the

beginning of the inertial range dynamics but too low to separate it from the effects of the dissipation

range dynamics, as claimed by Domaradzki et al. (1993).

Figures 2 and 3 show the energy spectra of the 64° and 32° LES, respectively, which are compared
with the energy spectra of the 128° DNS and the filtered 128° DNS (filtering was performed using the
top-hat filter) at r=29. All LES (using the LDKSGS model, the volume-averaged DKSGS model and
the volume-averaged DASGS model) are performed by first filtering the 128° DNS flow field down to
the LES resolution using the top-hat filter at =9 (at which time turbulence starts to decay by the
viscous damping and realistic turbulence is about to develop). Thus, at =9, all flow variables (e.g.,
velocities and pressure) are highly correlated with the DNS data in the physical space. However, as
observed in other studies, the subsequent evolution of the_ﬂow field in the LES becomes uncorrelated
with the DNS data. Therefore, point-to-point correlation between the data resulted from DNS and
those predicted by LES is not expected to be high. However, if the dynamic models guarantee the

accurate prediction of the turbulent energy transfer, then it is expected that the energy spectra




computed from DNS and LES will be closely located. This is clearly observed in figures 2 and 3. A
more interesting observation obtained from these figures is that the LES energy spectra are closer to the

filtered 128° DNS spectrum than the 128’ DNS energy spectrum itself. The difference (at the
wavenumber range below the cut-off wavenumber, k.) between the 128° DNS data and the filtered

128° DNS data is the result of using the top-hat filter which yields a significant contribution to the
subgrid-scale energy from the lower wavenumbers than k, (when the Fourier cut-off filter is employed,

the subgrid-scale energy is entirely due to the higher wavenumbers than k.). Therefore, it is consistent

that the LES data compare well with the filtered DNS data since the LES performed by the current
FDM code is implicitly adopting the top-hat filter in the numerical implementation. It can be deduced
from this observation that a more meaningful comparison between LES prédictions and DNS data can

be achieved by filtering DNS data down to the same resolution as LES.

Although in this study, some information from the spectral space (e.g., energy spectrum) is used for

comparison purposes, in most cases, the analysis of the properties of the proposed LDKSGS model will

be carried out in the physical space. To determine whether the SGS stress tensors in consecutive

resolutions (e.g., 64> and 32°) have some similarity (which is the basic assumption adopted in the
[au,. Ju, _ 94, 3,

dynamic models using two filter levels), the ratio of the dissipation rate (D =V| ==- —Pto
ox; 9x; Ox; 0x;

the production rate (P = —(LT&; —ii,ij):,-) of the SGS kinetic energy, (D/P), is investigated. This ratio is
expected to characterize the energy cascade mechanism inside the range of scales bracketgd by these
two energy transfers (the dissipation and production of the SGS kinetic energy). Furthermore, this
energy cascade mechanism uniquely determines the property of the corresponding SGS stress tensor.
Therefore, (D/P) is an appropriate parameter to investigate the existence of similarity in consecutive
resolutions. Figure 4 shows the time evolution of (D/P) at three different resolutions (64°, 32° and 16°)
as computed from the 128° DNS data. As noted earlier, the inertial range dynamics are not separated
from the effects of the dissipation range dynamics, hence, the value of (D/P) is not equal to unity even
in. the inertial range. It is observed: that the similarity of (D/P) exists between 32* and 16’ grid
resolutions (i.e., the (D/P) predictions from DNS data for these grid-resolutions remain approximately

same) while the similarity of (D/P) between 64° and 32 grid resolutions appears to be nonexistent,




 scales, including the Kolmogorov dissipation length scale,

especially, as time evolves. (The rapid change of (D/P) in the 64° grid resolution occurs since all length

grow as the turbulent kinetic energy decays.

Therefore, the 64° grid resolution becomes to lie under a larger influence of the Kolmogorov

dissipation length scale and shows a higher (D/P) ratio.) Thus, the similarity of the SGS stresses in

consecutive resolutions is not guaranteed for the 64° grid resolution. Therefore, the dynamic model in

the 64° LES (which uses the 32° grid resolution as a test filter level) may result in the reduced

accuracy. This will be demonstrated in the following figures.

To evaluate the performance of the SGS models, the time evolution of the velocity derivative (here, we

use dw/dz) skewness S and flamess F factors computed from DNS and LES data are compared. Since

the statistics of velocity derivative are the property of the relatively small scales, which are available in

the corresponding grid resolution, the comparison between DNS and LES data should be performed at

the same grid resolution. That is, before comparing statistics, DNS data should be filtered down to the

same grid resolution as the LES. Usually, the velocity derivative statistics are considered strict

standards for LES to match because they are determined by the small scales existing at that grid
resolution and the small scales are largely dependent on the SGS model employed. Therefore, these

statistics can be a direct measure of a quality of the SGS model. The skewness and flatness are defined

as follows:

S= M - (48a)

((owp y

F= _{(aw__/a_z)l (48b)

(@war)

Note that, here <-> denotes ensemble-averaging instead of test-filtering. Figures 5 and 6 show,

respectively, the time evolution of skewness and flatness at the 64> grid resolution. This grid resolution

has the cut-off wave number at k =30 which is located inside the dissipation range (see figure 1). Thus,

for simulations using this grid resolution, the role of the SGS models is not important since a significant




range of dissipation scales is resolved by the grid resolution. Without indicating any obvious superiority,
all dynamic SGS models contribute in a favorable manner since the low resolution simulations
adequately reproduce the higher resolution results. It can be seen from both figures that the curves for
all 64° LES are always loc_ated between the curves for the 128° and 64° DNS. All the LES results begin
to deviate from the filtered 128° DNS results at ¢ =21 (this is approximately the same time when the
32* (D/P) curve starts to largely deviate from the 64° (D/P) curve in figure 4). Also after ¢ =21, the
64° DNS results deviate from the filtered 12l83 DNS results due to the following reason. In the 64°
DNS, the Kolmogorov dissipation length scale is not fully resolved and, hence, the turbulent energy is
under-dissipated. As a result, the influence of the Kolmogorov dissipation length scale growth is not
properly included in the 64> DNS even when this length scale becomes comparable to the 64° grid

resolution in the 128° DNS.

In figures 7 and 8, the modeled production and dissipation rates of k,,, using the 64° LES are compared

to the exact values computed from DNS data. While the production rates are reasonably approximated
by both models, there is relatively poor agreement between the exact and the modeled dissipation rates
(as mentioned earlier, the poor prediction of the dissipation rate is caused by an inappropriate use of A

as a length scale). As time evolves, the decay of the dissipation rate of k,, (the slope of D in figure 8)

computed from the 128> DNS becomes less steeper since the Kolmogorov dissipation length scale

grows and becomes comparable to the characteristic length scale of the dissipation rate of k,,.

However, the effect of the Kolmogorov dissipation length scale growth is not properly accounted for in
the dissipation rate computed from both models. As a result, the difference between the exact and the
modeled dissipation rates becomes more amplified after ¢ = 19. The decay of the production rate of k,,
(the slope of P in figure 8) computed from the 128° DNS also becomes less steeper after 1= 24

indicating that the Kolmogorov dissipation length scale becomes comparable to the characteristic length
scale of the production rate of k,,. This fact can be considered a rough proof for the existence of the

585 °
scale separation between the length scales characterizing the production rate and the dissipation rate of

k
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the velocity derivative skewness and flamness computed from the
ts of the different

Figures 9 and 10 show, respectively,
32 LES and the filtered 128° DNS. There is now a clear difference in the resul

subgrid-scale models; the one-equation models (both the volume-averaged DKSGS model and the

LDKSGS model) are behaving better than the algebraic model. More interestingly,

the localized dynamic model predicts a more accurate flow field than the volume-averaged dynamic

it can be seen that

model. According to these figures, an overall agreement between DNS and LES results (even the most

accurate LES results using the LDKSGS model) becomes noticeably worse than the 64° grid resolution

case. However, it should be noted that a (somewhat) poor prediction of the velocity derivative statistics

by LES does not necessarily mean that the velocity statistics are also poorly predicted. This issue will

be addressed in more detail in section 4.3.

Figures 11 and 12 show, respectively, the exact and the modeled production and dissipation rates of k,,,

at the 32° grid resolution. From the comparison with the 64 grid resolution (figures 7 and 8), it can be

observed that the LES prediction of the production rate becomes WOrse as the grid resolution becornes

coarse. However, the dissipation rate is rather well predicted at the coarser grid resolution. In both grid

resolutions, the LDKSGS model shows an improved prediction of the dissipation rate from the volume-

averaged DKSGS model predictions. This improvement seems to originate from the fact that, in the

LDKSGS model, the local turbulent intermittency effects can be retained by not employing spatial-
averaging. Since the dissipation mechanism is dominated by the scales smaller than the scales

characterizing the production, it has a higher level of intermittency than the production mechanism.

Therefore, the LDKSGS model improves the prediction of the dissipation more noticeably.

Figures 13 and 14 show the temporal variation of the dynamically determined coefficients. In the actual

simulations of the LDKSGS model, the local values of the coefficients are used. However, to simplify

the comparison, the volume-averaged values are shown in figures 13 and 14. It is observed during the

simulations that the model coefficients can become negative even in volume-averaged values. In the

LES using the dynamic one-equation models (the volume-averaged DKSGS model and the LDKSGS
<0 and ¢, <0) do not cause numerical instability (we have shown
the LES using the

model), negative coefficients (i.e. c,
in section 2.4 that the LDKSGS model is realizable even when ¢, <0). However,




volume-averaged DASGS model sometimes becomes unstable when c, <0 (Lund et al., 1993).

Therefore, the DASGS model is constrained to have non-negative coefficients (as shown at the zero-

valued flat region of c,-plot in figure 13). When the model coefficients become negative (€.8.,¢; < 0
ackscatter, we require

and ¢, <0), the model predicts backscatters. To correctly model this b

information about the energy contained in the subgrid-scale. Thus, when the subgrid kinetic energy

vanishes, backscatters should vanish. This is automatically satisfied with one-equation models since the

eddy viscosity is modeled in terms of the subgrid kinetic energy; however, in the algebraic model,

<0) even when there is no energy Jeft in the subgrid scale thereby

umerical instability. Another interesting observation from figures 13 and 14 is that the

backscatters may occur (due to ¢,

resulting in n
than the coefficient

coefficient computed using the LDKSGS model is usually smaller in magnitude

computed using the volume-averaged DKSGS model. The dissipation model coefficient of the

LDKSGS model is more sensitive to a grid resolution change than that of the volume-averaged DKSGS

model.

4.2. Decaying isotropic turbulence

The experiment of decaying isotropic turbulence of Comte-Bellot and Corsin (1971) is simulated to

demonstrate the capability of the LDKSGS model in predicting the decay of the turbulent energy.

Another reason for this test is to compare the results with those of Ghosal et al.'s DLM(k) (1993; 1995)

which is the only other existing localized dynamic model formulated without employing the ad hoc

(averaging) procedure. They simulated this experiment using both 32% and 48° grid resolutions. In

predicting the energy decaying rate, a good agreement with the experimental data was obtained using a

48® grid resolution (see figure 1 in Ghosal et al., 1995). However, relatively poor results were obtained

using a 32° grid resolution (see figure 1 in Ghosal et al., 1993). This made them conclude that the 48’

grid resolution is the smallest possible resolution for LES since the 32° grid resolution is not fully

consistent with the basic assumption of LES that the resolved scales should contain most of the energy.

To investigate this issue, we computed the resolved energy at each grid resolution by numerically

_Bellot & Corsin(1971) between wavenumbers zero to the

integrating the spectrum given by Comte
arized in table 2. As

maximum wavenumber resolved by the grid resolution. The results are summ




shown, 32° and 48 grid resolutions resolve 59.3% and 70.3% of the total turbulent kinetic energy,

trictly speaking, both resolutions are, therefore, not fully consistent with the basic

respectively. S
a significant number of energy-containing eddies resides

assumption of LES. For these grid resolutions,

in the unresofved scales and the quality of the SGS model becomes much more important. Therefore,

the simulation of this experiment especially using the grid resolution coarser than 48° (i.e., when the

tal turbulent kinetic energy) is a good test case to measure

subgrid scales contain more than 30% of to
grid resolutions (48°, 32°, and 24%) are used for

the quality of the SGS model. For this purpose, three
the large-eddy simulations implemented here.

In the experiment, measurements of the energy spectra were carried out at three locations downstream

of the mesh (which generated the turbulence in the wind tunnel). At the first measuring station, the

Reynolds number based on the Taylor microscale and based on the integral scale were, respectively,

71.6 and 187.9 (these values decreased to 60.7 and 135.7, respectively, at the last measuring station).

Using the assumption of a constant mean velocity across the €TSS section of the wind tunnel, the

elapsed time for the wurbulent field traveling at the mean velocity from the mesh (that is, proportional to

the downstream distance) can be obtained. That is, the spatial evolution of turbulence in the experiment

can be converted to 2 temporally evolving state. Therefore, this (spatially evolving) problem can be

pic turbulence inside a cubical box which is moving with the mean flow

thought of as a decaying isotro

velocity. The size of the box is chosen to be greater than the integral scale of the measured real

trbulence. The statistical properties of turbulence inside the box are believed to be realistic even after

applying periodic boundary condition for numerical implementation. All experimental data is

nondimensionalized by the reference length scale 10M /2 (where M= 5.08cm is the wind-tunnel

mesh spacing) and the reference time scale 0.1 sec for computational convenience. (By this

nondimensionalization, the three measuring locations correspond to the three dimensionless time levels,

° =2.13, 4.98 and 8.69, respectively.)

es of the Qelocity Fourier modes) is chosen 10 match the

The initial velocity field (primarily the amplitud
three-dimensional energy spectrum obtained at the first experimental measuring station. The phases of

Fourier modes are chosen to be random so that the initial velocity field satisfy Gaussian statistics. The




initial pressure is assumed to be uniform throughout the flow field and the initial SGS kinetic energy is

roughly estimated by assuming the similarity between the SGS kinetic energy and the resolved energy at

the test filter level, ie.,

k=~ %“-((F.i.-) ) (49)

where a constant ¢, is determined by matching the magnitude of the SGS kinetic energy to the exact

SGS kinetic energy calculated by integrating the experimental spectrum at the first measuring station.

(In situations where the information about the magnitude of the exact SGS kinetic energy is not known,

a value of ¢, given by Liu et al. (1994) for the stress-similarity model, o, — 5, = ¢, (@)~ ), can
be used; that is ¢, =0.45+0.15. The initial SGS kinetic energy can be estimated more consistently with
the dynamic procedure by adopting the similarity concept used in the dynamic procedure. This
formulation is presented in appendix B.) Although the above procedure generating the initial condition

looks reasonable, the initial turbulent field generated by it may not be sufficiently realistic. Carati et al.

(1995) suggested that a practical way to make the initial field more realistic, is to let the flow evolve for

a few physical time steps and then multiply all Fourier modes by an appropriate real number to scale the

velocity field to be consistent with the experimental spectrum. This additional procedure for initial

conditions ensures that the randomly chosen phase information, the pressure and the SGS kinetic

energy becomes more realistic. This procedure is also adopted in this study.

Figure 15 shows the decay of the resolved turbulent kinetic energy computed using the LDKSGS model

at three grid resolutions, 48°, 32°, and 24°. The results are compared with the predictions of the

volume-averaged DASGS model at the 48° grid resolution and the experimental data of Comte-Bellot

and Corsin (1971). The predictions of both models (at the 48° grid resolution) are in good agreement

with the experiment. As is well known (Huang and Leonard, 1994), the turbulent kinetic energy

undergoes a power law decay, i.e., E~ ()", in the asymptotié self-similar regime. The experimental

data roughly confirms the existence of the power law by lying on a straight line on a log-log plot. The

decay exponent n is obtained from a least-square fit to each data as given in table 2. The value of n

predicted by the DLM(k) is used as given in Carati et al. (1995). (Actually, n=—1.28 was given for the
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DLM(k) in Carati et al. (1995). However, this value seems to be misprinted by accidentally switching
with the value for their stochastic dynamic localization model since the energy decay plot in their paper
clearly shows that the decay predicted by the DLM(k) is slower than that of the stochastic dynamic
Jocalization model.) These results confirm the agreement between the predictions of LES and the
experiment. More importantly, the results of the LDKSGS model at all three grid resolutions used
(even for the 24* grid resolution where about a half of the turbulent kinetic energy is not resolved)
show consistency in predicting the energy decay. This property of the model is a fascinating feature
especially when the model is (to be) applied to complex and high Reynolds number flows where a

significant amount of turbulent energy possibly lies in the unresolved scales. Without a self-consistent

behavior, the SGS model can not simulate high Reynolds number flows in complex geometries reliably.

Therefore, the proposed LDKSGS model seems to have a promising potential for application t0

complex, high-Reynolds number flows.

The computed and experimental three-dimensional energy spectra resolved at the three different grid

resolutions, 48°, 32 and 24°, are shown in figures 16 (at £ =4.98) and 17 (at " =8.69). Both of the

LDKSGS and volume-averaged DASGS models predict the spectra reasonably well. Especially, the
LDKSGS model predicts the spectra consistently well for all three grid resolutions. Some discrepancy
between the experimental and LES-predicted energy spectra is observed around the cut-off
wavenumber. This discrepancy is due to the fact that the FDM code used in this study implicitly adopts
the top-hat filter for its discretized numerical implementation, as veipla'med in section 4.1 (see figures 2
and 3). Direct comparison between experimental and LES-predicted energy spectra is meaningful only
when the full-resolution experimental flow filed is filtered down to the LES grid resolution to compare

using the top-hat filter (to be more consistent, the initial flow field for LES also should be obtained

from the experimental flow field using the top-hat filter).

Figures 18 and 19 show the time evolution of the model coefficient ¢, and the dissipation model
coefficient ¢,, respectively (locally evaluated coefficients are volume-averaged for quantitative
presentation). Even though a seemingly reasonable method to generate the realistic initial velocity field

described earlier was employed, the coefficients (both ¢, and ¢,) remain small for an initial period of
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time during which the more realistic turbulent fields develop. However, the final results appear to be
not much affected by this initial evolution period. It can be deduced from these figures that for same
flow conditions (e.g., same kinematic viscosity), larger value of the coefficients (both ¢, and c,) are
required for LES 1f the grid resolution becomes coarse in the simulation of (decaying) isotropic
turbulence.

4.3 Forced isotropic turbulence

A statistically stationary isotropic turbulence is simﬁlated using a 32° grid resolution. The main purpose
of this simulation is to determine whether a low resolution LES using the LDKSGS model can
reproduce the statistics (of the large scale structures) of a realistic, high Reynolds number turbulent
field. The results are compared with the existing high resolution DNS data by Vincent and Meneguizzi
(1991) and Jimenez et al. (1993) obtained at Re, =150 and Re, =170, respectively.

A statistically stationary turbulent field is obtained by forcing the large scales as was done by Kerr
(1985). In this study, the initial value of all Fourier modes with wave number components equal to 1 is

kept fixed. The initial condition is obtained by generating a random realization of the energy spectrum

(e.g., Briscolini and Santangelo, 1994),

4

k
Ek)= CW (50)

where k,=1 and C is a constant which normalizes the initial total energy to be 0.5. In isotropic
turbulence, there are some generally accepted parameters characterizing the flow such as the Taylor
microscale Reynolds number, the integral scale Reynolds number, and the large-eddy turnover time. For
an accurate estimate of these parameters, the full resolution DNS data are required. Strictly speaking,
there is no way to exactly evaluate these quantities from LES data. Therefore, the characteristic
parameters are computed here in an approximate manner. The energy dissipation rate € can be

computed accurately using the property of the forced turbulence since in the forced isotropic




turbulence, the energy dissipation rate is balanced with the energy injection rate by the external force.
The energy injection rate can be easily determined from the external force added into the field and the
velocity at the wavenumber component equal to 1 where the external force is applied. The total energy
E, involved in the cascade process is estimated by assuming that the energy spectrum obeys the

Kolmogorov law E(k) = C,e**k™? (where Cy = 1.5 is the Kolmogorov constant),

3

E = L' E(k)dk = Cye™ j; kP dk =Ec,_a"’k;2'3. (51)
The root-mean-square velocity u,,, is defined by

W, =§E,, (52)
and the Taylor microscale A is defined by

AN =15v,ul /e (53)

where v, denotes the use of the effective viscosity (v+V,) instead of the molecular viscosity. The |

integral scale / is
n - - 3n C,e2°k;>" |
1= o L:k I(Cxemk ”)dk =T6_L;‘_2L. , (54)

Finally, the Taylor microscale Reynolds number is defined as Re, = Up A/ Vg, the integral scale
Reynolds number as Re, = u,,, !/ v, and the large-eddy turnover time as ©T=1/u,,,. In this study, LES

are implemented under two different flow conditions. One is characterized by Re, = 260, Re, = 2400,
and 7 ~3.7; the other is characterized by Re, =80, Re, =220, and T ~4. The simulations have been
run for 27 and 25 large-eddy turnover times, respectively. To ensure statistical independence, 20 fields
are used in statistical analysis for both cases (i.e., the time interval bétween successive fields isAlarger

than (or at least same as) one large-eddy turnover time).




Figure 20 shows the temporal evolution of the mean turbulent kinetic energy. After an initial decaying
period (i.e., after ¢t = 20), the mean turbulent kinetic energy remains at almost the same level, reflecting
a balance between forcing at the large scales (the energy injection rate) and dissipation at the small
scales (the energy dissipation rate). Only this energy equilibrium period of time is used in statistical

analysis because it is closer to a statistically steady state.

Figure 21 shows the probability distribution of velocity differences, Su(r) = u(x+r)—u(r), for various
values of r (note that all values of r used here are comparable with the inertial range scales). For
generality, Su is normalized so that o® =< §u? >=1. The LES results (using the LDKSGS model at
Re, = 260) clearly show that the distribution changes from a non-Gaussian (which has the wings) to a
Gaussian, as r increases. The same behavior of the distribution was observed in the high resolution
DNS of Vincent and Meneguizzi (1991). In addition to the basic agreement regarding the development
of the non-Gaussian statistics, the LES accurately predicts the probability for each bin. Figure 22 shows
an agreement between the distributions for r=0.39 obtained from the LES and the DNS except for
some deviation in the wing region. However, as is well known, the wings of the non-Gaussian
distribution develop mainly due to small-scale fluctuations. Therefore, the deviation between the LES
and the DNS results in the wings is somewhat natural; since in LES, most small scales are not resolved

and even the resolved portion of small scales lies under strong influence of the top-hat filter implicitly

implemented in FDM code.

The statistics of velocity and its derivatives are also investigated. While the statistics of velocity are the
property of the large scales which are mostly resolved in LES, the statistics of velocity derivative are
the property of the dissipation range scales which are not resolved by LES. Therefore, the direct
comparison of LES and DNS using the statistics of velocity derivative may be meaningless. A more
useful comparison can be achieved by filtering the DNS field dowr to the same resolution as the LES.
For the same grid resolution and flow conditions, the statistics of the LES and the filtered DNS should
match well. However, the velocity derivative statistics of the filtered DNS data are not available,

therefore, the DNS statistics of velocity derivative obtained from the full resolution simulation (shown




in the table 4) is being used only as a qualitative measure for the LES results. We computed the nth-

order moments of the velocity and its derivative distributions using

<x">
5= - | B

here, <-> denotes ensemble-averaging instead of test-filtering. The results of this calculation is
summarized in table 4. The results of the 512° DNS (Re, =170), the 240° DNS (Re, =~150), and the

64° LES (Re, =140) are obtained from Jimenez et al. (1993), Vincent and Meneguizzi (1991), and

Briscolini and Santangelo (1994), respectively. (Note that different authors use a definition of Re, in

different form, however, we use the on'giné] value provided by the authors without any correction.) The
64 LES was implemented using the Kraichnan's eddy viscosity where the small scales are
parameterized reproducing a self-similar range of energy in spectral space. We simulated two different
Reynolds number cases using the same grid resolution to investigate the effect of the Reynolds number
on the statistics. As shown in the table, the velocity statistics appear not to depend on either the grid
resolution or the Reynolds number simulated. However, the velocity derivative statistics were highly
influenced by the grid resolution employed (it can be observed from the table that those values of the
velocity derivative statistics are consistently decreased as the grid resolution becomes coarse from 5123
to 32%). In the LES, the effect of the Reynolds number on the velocity derivative statistics is not
captured (in the DNS of Jimenez er al. (1993), consistent increase in the velocity derivative statistics
with Reynolds number increase was observed), since the velocity derivative statistics are strongly

determined by the grid resolution employed.

Figure 23 shows that the fraction of grid points where the model coefficient ¢, is negative. In the LES
using the LDKSGS model, regardless of the Reynolds number simulated, about 20% fraction of grid
points have negative model coefficient throughout the simulation. Carati et al. (1995) reported that the
DLM(k) predicts negative model coefficient in about 13% fraction of grid points for a similar forced
isotropic simulation. Therefore, the LDKSGS permits backscattering in larger fraction of grid points

than the DLM(k).




Figures 24 and 25 show the temporal evolution of the model coefficient c, and the dissipation model
coefficient ¢, (locally evaluated coefficients are volume-averaged for quantitative presentation). The
LDKSGS model predicts ¢, = 0.056 and c, = 0.33 for higher Reynolds number case (Re, = 260) and
¢, =0.05 and c, = 0.44 for lower Reynolds number case (Re, = 80). These values for ¢, are pretty well
matched with that suggested by Yoshizawa & Horiuti (1985); they recommended ¢, =0.05 from the
framework of the two-scale direct-interaction approximation (TSDIA). (Note that, in the Reynolds-
averaged turbulence models, a generally adopted value for ¢, is about 0.09; that is significantly larger
than that for LES.) However, there are some discrepancies between ¢, values dynamically determined
and suggested by Yoshizawa & Horiuti (¢, =1). From the observation of these figures, it can be

roughly concluded that in LES of (forced) isotropic turbulence using the fixed grid resolution, a larger

value of the model coefficient ¢, and a smaller value of the dissipation model coefficient c, is required

as higher Reynolds number flows are simulated.




§, Conclusions

In this paper, the properties of a new dynamic localized model (the LDKSGS model) have been studied.
This model is formulated using the subgrid-scale kinetic energy equation model as a base model. As
was done.in the other dynamic models, two different filter levels are introduced to dynamically
determine the model coefficient. However, this mode! has a unique feature which distinguishes it from
the previously developed dynamic models; that is, in the present model, Germano et al.'s mathematical
identity is not employed. This feature allows the LDKSGS model to overcome some of the inherent
deficiencies in the dynamic procedures using Germano et al.'s mathematical identity, such as, the
mathematically inconsistent derivation and ill-conditioning problem. The instability caused by the
prolonged presence of negative model coefficients is also prevented in the LDKSGS model by the use
of the subgrid-scale kinetic energy to model the subgrid-scale stress tensor. Another advantage obtained
by avoiding Germano ez al.'s mathematical identity is that the LDKSGS model has a relatively simple
structure which makes the model computationally very efficient. As a result, the additional expense
involved in the solution procedure of the subgrid-scale kinetic emergy transport equation (when
compared to the DASGS model) has been greatly compensated. Moreover, the localized model
coefficients obtained from the LDKSGS model are shown to be Galilean-invariant and very realizable.
Especially, the realizability of the model prdvides a means to obtain a numerically stable and a

physically accurate solution.

The LDKSGS model has been successfully applied to three different types of homogeneous turbulent
flows. In the simulations of Taylor-Green vortex flow, the results obtained from the LDKSGS model

were compared with those of two existing dynamic models. It was demonstrated that the LDKSGS
model yields a better agreement with the high-resolution DNS than other dynamic models tested. The
capability of the LDKSGS model in predicting the energy decay rate has been demonstrated by
simulating the decaying isotropic turbulence and comparing the r;asults to the experimental daté (the
LES results confirmed the power law decay which was observed in the experimental data).
Furthermore, three different resolutions LES (at the coarsest resolution, about a half of the kinetic

energy was not resolved) showed consistency in predicting the energy decay. This property of the




LDKSGS model is very attractive, especially when the model is (to be) applied to complex and high
Reynolds number flows where a significant amount of turbulent energy possibiy lies in the unresolved
scales. The application of the present model to forced (statistically stationary) isotropic turbulence also
proves the capability of the LDKSGS model in reproducing the statistics (of the large scale structures)
of a realistic, high Reynolds number turbulent field. The LES results, when compared to the high
resolution DNS data, clearly show the accurate prediction of velocity statistics and the development of

the non-Gaussian statistics (which was observed in the high resolution DNS).

To complete the study on the properties of the proposed model, the model behavior near solid walls
and for anisotropic grid should be included. This issue is currently being investigated. According to the
preliminary results obtained from the large-eddy simulation of turbulent, plane Couette flow, the

present model can be applied to the wall-bounded flow simulations in a straightforward manner. The

detailed results of this study will be reported in the near future.
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Appendix A. The dynamic determination of the diffusion model coefficient

The diffusion term in the transport equation for k., (14), can be rewritten as;

a akzs
—| D +v—,1. Al
ax,.(D'” ax,-) AL

Here, the exact expression and the model of D, at the grid filter level are given by
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where k_, =4uy; and ¢, =¢, /o,“—v/ k! A which is defined here as a diffusion model coefﬁcwnt Using

888

the logic described in section 2.3, the following expression for the diffusion flux at the test filter level is

obtained,

4 = —(pm)- %) -((7k.)-ik.)+ i((fﬁ;)’ﬁﬁ;)

~ ok,
ox;

(A3)
= c,,k* A—=

where k,, =Yuu, =4uu +k,, and k. «}((E - ). (A 3) does not include any other unknowns
except c,, hence, ¢, can be determined directly from (A 3). However, since (A 3) is a set of three

independent equations for one unknown ¢, the least-square method is needed to solve this over-

determined system as was done to determine c,; this approach gives

4o a;f
;= (A4)
k* Aak ak

ox; ax

Appendix B. The dynamic estimate of the initial £,

As shown by Yoshizawa (1985), the usual Smagorinsky model can be derived from the SGS kinetic
energy model by assuming the equilibrium of the SGS energy production and dissipation. Upon this

assumption, the SGS energy is described in terms of the grid width and the resolved scale strain rate
tensor without employing a transport equation for k,,,. This description is easﬂy obtained by comparing

(6) with (15) and (16),

k.., =4z, - ;) = B3] . | ®1)




The test-filter-level energy is also described in a similar manner,

4

k. =4((za)-5) = cE[3. ®2)

Now, a dimensionless coefficient C can be evaluated from (B 2),

km
C~—A-2-I-§lr. B3)

By substituting (B 3) into (B 1), we get

k sEszk (B4)
"R

(B 4) can provide a dynamic estimate of k,,, when the initial k,,, is not known. Interestingly, the

285

description for k,,, in (B 4) is same as in (49) except that (B 4) contains a variable coefficient while (49)

585

contains a fixed coefficient c,. By analogy between (B 4) and (49), ¢, can be evaluated from the

resolved scale information in LES data,

2

-

A'|S

G ”T‘Ijz'- BS)
23

Using the LES data of the forced isotropic turbulence (section 4.3), (B 5) prediéts ¢, = 0.49 for higher

Reynolds number case (Re, =260) and ¢, = 0.45 for lower Reynolds number case (Re, =80). These

values are in very good agreement with that given by Liu ef al. (1994). In their work, ¢, =0.4510.15

was obtained from a high Reynolds number (Re, = 310) experimental data for a free jet.
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Table 1.
Table 2.

Table 3.

Table 4.

Table Captions

Characteristic scales and flow properties at the grid and test filter levels.

Resotved energy at various grid resolutions. This data is obtained from numerically
integrating the spectrum given by Comte-Bellot & Corsin (1971).

Decay exponent n of the power law decay E ~ (1°)". The experimental data is obtained from
a least-square fit to the resolved energy data which is computed by numerically integrating
the spectrum of Comte-Bellot & Corsin (1971).

Higher-order moments for a velocity component, &, and its longitudinal and transverse

gradients, du/dx and du/dy. The nth-order moments are denoted by S,. The DNS statistics
of velocity derivative are obtained from the full resolution field. Therefore, the direct

comparison of LES and DNS using the statistics of velocity derivative may be meaningless.




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure Captions

Energy spectrum, E(k), and dissipation spectrum, D(k)= 2vk2E(k), computed from 128°
DNS data at £ =29.

Energy spectra computed from 128° DNS and 64° LES using various dynamic SGS models
atr=29.

Energy spectra computed from 128° DNS and 32° LES using various dynamic SGS models

atr=29.
Time evolution of the ratio of the dissipation rate of the SGS kinetic energy (D) to the

production rate of the SGS kinetic energy (P) computed from 128° DNS data at three

different grid resolutions.

Time evolution of the velocity derivative skewness computed from 128° DNS and 64° LES
using various dynamic SGS models.

Time evolution of the velocity derivative flatness computed from 128° DNS and 64° LES
using various dynamic SGS models.

Time evolution of the production rate of the SGS kinetic energy computed from 128° DNS
and 64° LES using dynamic one-equation SGS models.

Time evolution of the dissipation rate of the SGS kinetic energy computed from 128° DNS
and 64° LES using dynamic one-equation SGS models.

Time evolution of the velocity derivative skewness computed from 128" DNS and 32° LES
using various dynamic SGS models.

Time evolution of the velocity derivative flatess computed from 128° DNS and 32° L_ES
using various dynamic SGS models.

Time evolution of the production rate of the SGS kinetic energy computed from 128’ DNS
and 32° LES using dynamic one-equation SGS models.

Time evolution of the dissipation rate of the SGS kinetic energy computed from 128* DNS
and 32° LES using dynamic one-equation SGS models.

Time evolution of the model coefficients determined by various dynamic SGS models.
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Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.
Figure 19.

Figure 20

Figure 21

Time evolution of the dissipation model coefficients determined by dynamic one-equation
SGS models.

Decay of turbulent kinetic energy resolved in three different resolution LES; compared to
the experimental data by Comte-Bellot & Corsin (1971). ‘

Energy spectra predicted by three different resolution LES at 7’ =4.98; compared to the
experimental data by Comte-Bellot & Corsin (1971).

Energy spectra predicted by three different resolution LES at ¢ =8.69; compared to the
experimental data by Comte-Bellot & Corsin (1971).

Time evolution of the model coefficients determined from three different resolution LES.
Time evolution of the dissipation model coefficients determined from three different

resolution LES.
_ Time evolution of mean kinetic energy resolved in 32° LES at two different Reynolds

numbers.
. Probability distribution of normalized velocity difference for five different scales (r)

predicted by 32® LES at Re, =260.

Figure 22. Probability distribution of normalized velocity difference for r =0.39; compared to the high

resolution DNS results by Vincent & Meneguizzi (1991).

Figure 23. Time evolution of negative model coefficient fraction resulted from 32° LES at two

different Reynolds numbers.

Figure 24. Time evolution of the model coefficients determined from 32° LES at two different

Reynolds numbers.

Figure 25. Time evolution of the dissipation model coefficients determined from 32° LES at two

different Reynolds numbers.
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Grid filter level Test filter level
Dissipation Production Dissipation Production
range range range range
Characteristic | Not available A Not available | Not available A=2A
length scale
Energy level uy, Ui, ;‘j‘-x) (a7, ui,
Stress tensor _l_ﬁz_ uu; @ (i‘-ﬁj) ;‘:—xﬁ'j _
rate i % i 9%j j O%i i %%
Strainrate | Notavailable 5; Not available | Not available 5
tensor
Effective v v V+Vg
viscosity
tained from the LES.)

(Here, "Not available” implies that this information can not be ob

Table 1. Characteristic scales and flow properties at the grid and test filter levels.




Grid 512°

resolution

384°

256° | 192°

128°

96°

48°

32° | 24°

16’

122 | &

Resolved | 99.8

energy (%)

99.5

98.4 | 96.6

922

8731783

70.3

59.3 | 49.7

35.1

24.4 | 10.5

Table 2.

Resolved energy at various grid resolutions.

integrating the spectrum given by Comte-Bellot & Corsin (1971).

This data is obtained from numerically

Grid resolution Experiment LDKSGS DLM(k) DASGS
48’ -1.20 -1.17 -1.17 -1.20
32° -1.16 -1.13
_24® -1.12 -1.09

Table 3. Decay exponent n of the power law decay E ~ (£)". The experimental data is obtained from

a least-square fit to the resolved energy data which is computed by numerically integrating

the spectrum of Comte-Bellot & Corsin (1971).




u ou/ox ou/dy

S, S, S, S, S S, S, S, S, S,
512°DNS | 2.80 | 125 |-0525| 6.1 | -12.0 | 125 9.4 370
240° DNS 05| 59 | -9 90 | -004| 80
64° LES -0.35 | 0.06 | 4.5
32° LDKSGS| 278 | 119 |-0317| 3.47 | -348 | 234 |-0.005| 4.87 |-0.109] 499
(Re, =260)
32° LDKSGS| 2.80 | 12.1 [-0302} 3.59 | -3.57 | 25.8 | 0.028 | 4.93 | 0.233 | 51.3
(Re, ~80)

Gaussian 3.0 15.0 0.0 3.0 0.0 15.0 0.0 3.0 0.0 15.0

Table 4. Higher-order moments for a velocity component, u, and its longitudinal and transverse

gradients, du/dx and du/dy. The nth-order moments are denoted by S,. The DNS statistics
of velocity derivative are obtained from the full resolution field. Therefore, the direct

comparison of LES and DNS using the statistics of velocity derivative may be meaningless.
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A new semi-implicit fractional step method for simulation of turbulent
flows on a non-staggered grid.

V. K. Chakravarthy and Suresh Menon
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia.

Abstract

A method for solving Navier Stokes equations for reacting flows in the near
incompressible Mach number limit is proposed and validated in this paper. A fractional
step method often used in methods to simulate incompressible flows, is employed in the
present formulation. An implicit scheme is used for time integration, which gives us a
larger domain of stability. The convergence of the scheme is found to depend strongly on
the efficiency of the method used to solve the elliptic equation for pressure. A multigrid
scheme is used for achieving the required efficiency in the present formulation. The
present method is found to be especially useful for application to Large Eddy Simulations.
The variables used in such simulations are physical quantities convolved with some spatial
filter and centered at the location where the corresponding filtered variable is defined. The
use of a non-staggered grid, where all primitive variables are defined at the same physical
location provides an unique location (at the grid node) of the filter for all the variables.
The relative merits of this method over the existing methods that employ non-staggered
grids, are indicated in this report and are proven using various test problems.

1. Introduction

A numerical method for solving three dimensional time dependent Navier-Stokes
equations governing chemically reacting flows at low mach numbers is presented. At low
speeds, acoustics have negligible effect on the fluid flow (and chemistry in case of
chemically reacting flow fields). Chemical reactions in such flow fields essentially take
place under isobaric conditions. The effect of combustion then, is felt as volumetric
dilatation due to heat release and subsequent density variation. A method used by
Mc.Murtry et al [1] for incorporating this effect into a flow field (that would be
incompressible in the absence of heat release) is combined with a second order semi-
implicit fractional step method formulated on a curvilinear non-staggered grid. Similar
formulation for use in modeling of subsonic flows can be found in an article by Boris and

Oran [2].
First proposed by Chorin [3] and Temam [4], the fractional step method has been modified

many times because of it's initial shortcomings. Much of the work has been done on
staggered grids. The physical locations where each of the variable is defined, varies from
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method to method. A survey of these layout issues can be found in Yan Zang et al [5].
The present method defines all variables at the grid points and involves an upwind
interpolation of velocities to half points on the grid (cell faces) and uses these interpolated
values in the calculation of the source terms for the pressure Poisson equation (much like
the way it is done by Yan Zang et al [5] ). This makes it mimic the behavior of fractional
step methods formulated on much used staggered grids. This prevents the pressure
velocity decoupling and also enforces full mass conservation in the case of incompressible
flows. The way in which volumetric dilatation due to heat release is accounted for,
however makes the method non-conservative in case of chemically reacting flow
simulations. This kind of layout leads to a reduction in terms of storage requirements for
the metrics per node. Also the definition of all the primitive dependent variables at the
same physical locations is advantageous in terms of analysis of the results obtained.
Further, this layout is also preferable in terms of Large Eddy Simulation (LES). LES
involves modeling of flow quantities that are convolved with a filter centered at the point
where the quantities are defined. The information lost in the scales below the characteristic
filter width is accounted for using a model. If a staggered grid layout is used, the velocities
(contravariant or covariant) are defined at different locations which in a LES would imply
that the filters needed for each of these velocity components are centered at different
locations. This would need special attention in a LES. Since LES capability is the main
requirement in the present study, a non-staggered grid is used.

The Poisson equation is solved using a multigrid scheme. Use of pseudocompressible
methods along with an accelerating procedure such as a multigrid scheme would involve
residual reduction in each of the coupled equations using the multigrid scheme. In the
fractional step methods, however the multigrid scheme is necessary only for one elliptic
equation. This leads to a substantial saving in terms of time for advancement of the
solution. Unlike the methods based on block LU decomposition due to implicit treatment
of diffusion terms [5], the present method treats implicitly also the nonlinear terms giving
it better stability all the way to the inviscid limit. The memory storage efficiency, stability
and accuracy of the method are established by simulation of various flows.

2. Low Mach number approximation of chemically reacting flow equations.

Consider the equations governing the flow a reacting perfect gas.

9P, 9 (1, )=
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where u, represents the Cartesian velocity components, p is the fluid density, p is the
pressure, T;; is the viscous stress tensor, g; is the heat flux, Q is the heat source, C, is the
concentration of 0" species (Greek indices are used to denote properties of chemical
species and are not tensor indices). R, ,D, are the species production rate and species
diffusion coefficient of a® species. E = e +0.5u; u;, where e is the internal energy. These

equations are conservation equations for mass, momentum, energy and chemical species
respectively. These need to be supplemented with the equation of state relating density,

temperature and pressure.

All the variables are put in dimensionless form by scaling with their reference quantities.
The effect of compressibility is realized through a dimensionless parameter Y M ? (where
M is the Mach number and ¥ is the ratio of specific heats). Assuming this to be small at
low speeds and using perturbation analysis, we arrive at approximate governing equations
for low speed reacting flow. Such an analysis was conducted by various researchers and
we just give the final form of the equations without the actual analysis for brevity
purposes. It is seen that all dependent variables appear only to lowest order of
perturbation except for pressure, in which values upto two orders appear.

%‘tz-i--é%(puj): 0
TR

aa;;‘:” =0

PP =pT

aac: + BE.)x- (C,u;)=DaR, +;}e_9-az—x%

J

dy; 1 ( Y 9dg, aP(O)
dx, Yp®\PrRedx, 0t +CeQ

where Pr, Re, Da and Pe are the Prandtl, Reynolds, Damkohler and Peclet numbers. Ce is
reference heat release non-dimensionalized using reference quantities for velocity, length,
density, temperature and C,. This parameter needs to be small for the above

approximation to be valid.
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All dependent variables now represent lowest order values except pressure where the two
order values are denoted by corresponding superscripts. The lowest order pressure as a
result of lowest order approximation to momentum equation, is now constant in space but
can vary in time. The first order pressure gradient enters the first order approximation of
momentum equation. In this approximation, the speed of sound is infinite, so the
thermodynamic pressure variations due to combustion are felt instantaneously making
p©constant. So combustion in the field is an isobaric process. The first order pressure is
the dynamic pressure associated with the flow and has the sense of normal fluid stress as in
incompressible flow fields. Q is the non-dimensional heat source and if this is zero,
volumetric dilatation also reduces to zero. The temporal variation of thermodynamic
pressure depends on whether combustion is a constant volume process (as in confined
domains) or a constant pressure process (as in unconfined domains. The superscripts on
first order pressure is dropped in following sections.

3.1 Review of fractional step methods.

This section briefly reviews the fractional step methods used to model incompressible
flows. Fractional step methods are often preferred in the present day over other methods
like pseudocompressiblity methods and vorticity-stream function methods because of their
efficiency in terms of memory storage requirements and less complication in numerical
implementation (see Quartepelle [6] ), which is especially the case when using accelerating
procedures like multigrid schemes. The advantages of this method have also been
discussed to some extent by Yanenko [7]. However there still are a few shortcomings in
this method that haven't been resolved. Some of them are listed here and are looked into in
later sections. Similar analysis was conducted by Perot [8], especially for methods
involving block LU decomposition due to implicit treatment of diffusion terms. Similar

notation is used here.

Consider the incompressible Navier-Stokes equations in non-dimensional form (density =
1).

du; _

ax @
2

ou; tu ou, __dp + 1 dy @

ot ’ax,.‘ ox; 'ﬁzaxkax,‘

Temporal discretization of these equations usually involve explicit updating of convective
terms and semi-implicit trapezoidal updating of diffusion terms. This produces a system of
equations as follows.
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H, is the discrete convective operator, L is the discrete Laplacian operator G, is the
discrete gradient operator and D, is the discrete divergence operator (not to be confused
with the notation used for species diffusion coefficient previously). These can put in the
following form.

A Gi u;ﬂ-l ';
b, ol |lo ®)
where

A =—1—[I - —A—t—L], r, contains the remainder of the terms which are explicitly known.

At 2Re
This is usually factorized (to within an approximation) as
A0 Nw |_[7] .
D, -AtL||p™] |0 ©)
[1 AIG,-][“?”]_ [ ] (©6b)
O I pn+l Lpn-t-l | .

In the above factorization , G, is replaced by A At G,. From the definition of A, it is seen
that the error in factorization is of first order. This error tends to be diffusive and aids
stability but needs to be avoided for time accurate calculations (Numerical dissipation
should be minimized as much as possible in unsteady calculations). Taking divergence of
the first vector equation in the second step, we arrive at a Poisson equation for pressure.
This equation is

Du
[ S n+l 7
A7 Lp @)

The correct source term in Poisson equation for pressure should be divergence of the
convective term in the momentum equation which is equal to the source term in the above
equation to within a first order error. So the evolution of thé pressure field is also first

order accurate.
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The first of the two shortcomings mentioned above, the error in factorization can be
rectified to a certain extent. Several modifications have been proposed to overcome this
problem. Maday et al [9] proposed a modification of r; to explicitly account for the error
through it's approximation in terms of known quantities. This approach has not been used
much because of it's suspected stability properties. The second approach proposed by
Perot [8] involves a different type of factorization of discrete time operator matrix acting
on primitive variables. This approach leads to an equation for pressure that is not a
Poisson equation but one of a higher order. In such a case, one needs to define a new
pressure variable leading to a complicated pressure updating procedure.

The second of the issues that needs to be resolved appears more severe than the first one.
The error in the source term is Re™ (0.50%u; /dx7)/0x; and in the corrector step of

the method leads to a first order error in velocity. Perot concludes that it is not possible to
attain a higher order of accuracy for pressure in such formulations. However, as claimed
by Temam [10], the first order error in pressure may not effect the orderof accuracy of the
velocity field. This is due to the fact that the error term is usual small in most flow fields.
It is suspected by the authors that, in flow fields with intense pressure gradients this error
may be high enough to effect the accuracy of the velocity field as well. It is possible to
define a new pressure variable ( so called discrete pressure) to absorb the error and this
has been used by Zang et al [S]. As pointed out previously by Perot [8], this however is
not always possible and cannot be considered a permanent solution to the problem.

3.2 Second order fractional step method with trapezoidal updating.

In this section, a numerical method with implicit trapezoidal updating for equations
governing reacting flows under zero Mach number approximation is presented. Consider
first the conservation equations for mass and momentum. The species continuity equation
is considered at the end of this section, rest of the equations in zero Mach number
approximation are all algebraic and need no time integration.

90,4, 2P p2 iz 8
ar o, P o, ®
olpw)  , Alpw) | 9% __3p, 9 (1) ©)

ar 4 Tax, PY3x ox  ox

J

The volumetric dilatation is obtained in terms of an algebraic expression. For ease in
further analysis, the following notation is used.
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So the conservation equations now become

ap
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A semi-implicit time integration scheme is used to advance the solution in time.

pn+l - p
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Following two step iterative solution procedure is proposed for converging the solution at
each time step.

p”.H -p n n+l
=0.5(A"+ A 4
- 5(A" + A™) a4)
(pui) - (pui) = O.S(B:' + Bin+l) (15)
At
followed by
(pui)nﬂ —(pu‘.)‘ _ apn+1/2 (16)
At ox;

Adding the two equations above, we can say that the numerical solution is second order
accurate provided the pressure required in the second step is also atleast second order
accurate. The equation for pressure is obtained by taking divergence of the second step of
the split scheme.

azp™2 1 9 - .
ax,9%, = Atdx, (pu.‘) (pui) ] an




This equation needs to be solved before the second step of the solution procedure. In
order to check the accuracy of this equation, we substitute for intermediate value of the
momentum flux into it's place in the source term. Then the Poisson equation looks like

azpnm 1 a ntl n a . .
=- ) =(pu) |+0.5—(B +B"
axkaxk At axi (pux) (pul) ]+O Saxi( i + i ) (18)

This is an second order approximation to the following Poisson equation.

2 2
a’p  __ d (pu,-)+ 0B )
0x,0x, dox;0t 0dx

which is exact equation for pressure in continuous time domain. A genuinely second order
scheme is obtained without any complicated pressure updating and also we only have a
Poisson equation that needs to be solved unlike higher order equations that usually are
obtained at this stage and need definition of new pressure variable. There is however an
issue here that has previously been addressed by several researchers regarding the
accuracy of the above approximation after spatial discretization in the fully incompressible
case. The viscous stress term in the momentum equation for fully incompressible flows
does not contribute to the source term of the Poisson equation since it is divergence free.
This is because the Laplacian operator and the divergence operator commute. This
however may not always be true in case of finite difference approximations to these
operators, although the error involved is found to be usually very low (lower in order than
the total truncation error in the scheme). But for some incompressible flow problems, the
error involved could cause the unsteady solution may drift from actuality (non-periodic
boundary conditions, high grid stretching , skewness of the grid are usually cited as
sources of this type of error). In such cases, a new intermediate velocity variable is defined
which is calculated without the viscous term. This new variable would then be different
from the previously defined intermediate velocity variable and is used to calculate the
source term for the Poisson equation. This source term doesn't involve the viscous term
like in the continuum case. The issues regarding the Poisson solver are discussed in a later

section.

In case of reacting flows, a species continuity equation also needs to be integrated in time.
This is handled much the same way as the mass conservation equation, except that p is
now replaced by C, and the extra diffusion term in species equation is updated using a

trapezoidal scheme.

3.3 Spatial discretization

A non-staggered grid layout is employed for spatial discretization. Although conservative
forms are preferred, under the zero Mach number approximation, the nonlinear erms
cannot be put in the conservation form. This is because the volumetric dilatation is




explicitly known as an algebraic expression. For cases without heat release however, the
nonlinear terms can be put in conservative form. The non-conservative formulation

necessary for the chemically reacting flows is discussed here.

Let us consider the terms in A. The volumetric dilatation is explicitly known. The other
term is discretized as follows.

ap o, dp
U =u, , (20)
Tox; 'dx;dE,
where &, is the coordinate in the computational space. -g—g-— is the metric of transformation
X.

J
and is calculated with second order accuracy. The density gradient in the computational
space is calculated using an upwind biased numerical approximation with upwinding based

on the contra variant velocity u; —a——"—
X
Non diffusive part of B, is written in terms on transformed coordinates as follows.
9E, 9 (pu,) ou,
AT Bl o AP, Pyt B 21
“iax, 0% o, | @b

In the zero Mach number formulation, the volumetric dilatation is explicitly known. The
derivative in the computational domain is evaluated again as an upwind biased third order

finite difference approximation based on the sign of u; %-a-"—
X

The diffusive part can be put in full conservation form as

A —a—(GH -a—u—'-) .where J is the jacobian of the transformation. J ' =det [_a_x_, .
Re 9§, 1 a§;
. . 10§, 9&,
and G, is called the mesh skewness tensor given by = -
Jdx, 0x,

The second order 19 point generic stencil is used to discretize the Laplacian operator on
the computational grid.

3.4 Poisson solver

The Poisson solver is implemented in full conservation form. This ensures full mass
conservation in incompressible flows. For reacting flow calculations within the framework
of zero Mach number approximation , as stated earlier full conservation form is not

possible.
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Special care needs to be taken with regards to pressure solvers when fractional step
methods are used on non-staggered grids. Straight forward discretization of the equations
often causes pressure velocity decoupling leading to checker board type high frequency
oscillations of velocity and pressure [11]. A staggered grid layout is often preferred to
circumvent this problem but this layout is more expensive in terms of storage requirements
and is not completely without problems. Stencils for spatial discretization are to be chosen
50 as to achieve coupling of pressure and momentum equations.

The Poisson equation in curvilinear coordinates after discretization in space is

d dp)__ 1 3 JI3& [ Y _(ou)
ai,{c"’ag,.)‘ Atag,.{fax, (ps)™ - (pw) ]}

Let %g_&_,- [(pu N —(puj).] be denoted by F. This is evaluated at the half points and
X

J
needs the values of the metrics at the half points. The source term is now discretized as

1
——A-;[ (F;)»m,jx _(E);-uz.u: +(F;)i‘j+112.k —(F;)i.j-llu +(F;)i.j,k+ll2 —(F3)i,j.k—l/2]' where  the

indices outside of regular brackets denote the location in computational domain. Uniform
computational mesh with unit spacing has been used here. F, here is correction to the mass
flux vector (across the surface when looked upon in the finite volume sense). In
incompressible flows, the density is constant and u*' should be divergence free. So for
this case, in solving the poisson equation, only the intermediate momentum term in the
source term is considered. On solving the equation, we make the velocity at the advancing
time step, divergence free in the fully conservative discrete sense.

The values of intermediate fluxes are needed at the half-points for the calculation of
source term. Use of any symmetric interpolation scheme for this purpose, decouples the
pressure and velocity fields. So an upwind biased QUICK interpolation scheme is used to
obtain intermediate fluxes at the half points. This has been successfully used to obtain

strong coupling by Yang et al [5].

The 19 point generic stencil is used for discretizing the Laplacian operator in the Poisson
equation. A successive line over-relaxation (SLOR) scheme is used for the solution and a
four level multigrid (MG) scheme is used to accelerate the convergence. The type of MG

cycle is chosen based on the problem at hand.

When an accelerating procedure such as MG scheme are being used, simpler relaxation
schemes such as point Jacobi or Gauss Seidel schemes are preferred because of their
simplicity in implementation and easy vectorizability .(or parallelizability). A SLOR is
preferred here though because of it's high local convergence rate. The numerical method
here involves global iteration because of it's implicit nature and this makes the efficiency of




the Poisson solver a very important factor towards total efficiency. It is found that, except
for the initial stages of time advancement, the values of pressure from a sub-iteration form
a very good estimate of the solution of Poisson equation at next sub-iteration. When such
is the case, the MG cycle ( necessary if one uses point Jacobi or Gauss-Seidel schemes) is
not necessary, a couple of SLOR iterations on the finest grid level are enough to reach the
solution. Further, SLOR schemes can fully vectorized at the expense of extra memory
storage when required.

The spatial discretization stencils used here are found to yield very little artificial
dissipation which is very desirable for accurate integration of time dependent flows. This is
illustrated by simulating flows with known exact solutions. However one needs to ensure
that the grid stretching is no more than 6-7%. If this is not the case, the derivatives in the
computational domain used in the convective terms are computed using finite difference
approximations with the stretching explicitly taken into account.

3.5 Boundary conditions

The velocity boundary conditions are specified as usual. At the inflow, the three velocity
components are specified and at the outflow boundary, they are extrapolated from the
interior. The intermediate velocity components are extrapolated to either of these
boundaries. No slip condition is implemented at the walls and the intermediate velocity is

extrapolated.

For the Poisson equation, it is not a necessity to implement boundary conditions. This is
because, the extrapolation of intermediate velocities to the half points for calculation of
source terms makes this formulation mimic the behavior of the staggered grid formulation
(see Rosenfeld [12]). The issue of boundary conditions for pressure in staggered grid
formulations where all pressure nodes are interior to the domain, has been discussed by
Kim and Moin [13]. Gradient of pressure is equal to the value of intermediate velocity at
each point and one may utilize this fact to implement a Neumann boundary condition at
the boundary. Better ways of applying boundary conditions on non staggered grids are
available [14] which are more expensive, but are not usually required except for in
complex wall geometries.

3.6 Stability and efficiency of the numerical scheme

Stability in numerical schemes is governed by two factors. The first is the inviscid stability
limit called the CFL condition. The second is the viscous stability limit which usually
becomes restrictive near the boundaries and is expected to depend on the local shear
stress. If the CFL number is defined as done by Yan Zang [S], the time integration was
found to be stable upto a value of CFL as high as 2.5 in cases where viscous stability is not
of concern (like problems with periodic or symmetric boundary conditions). However as
pointed out by Choi and Moin [15], use of time steps equal to or more than the
Kolmogorov time scale can lead to erroneous time history in case of direct numerical -




simulation of turbulent flows. So the time step for each simulation is also restricted by the
relevant physical time scales in the flow field.

This formulation needs storage of metrics and jacobian at the grid points and metrics at
the half points. Including the mesh skewness tensor that has six independent components
(because of symmetry), the storage requirement is 25 geometric variables per grid point.

The accuracy and stability in terms of CPU time requirements are illustrated by
application of the method to various problems in the following sections.

4. Numerical results.
4.1 Multigrid Poisson Solver

The performance of the multigrid as against a single grid SLOR simulation is presented in
Fig. 1. The convergence of the schemes is plotted against the CPU time required. The
convergence is quantified by the L_ norm of the change in values after each iteration. In
case of single grid simulations, the convergence is found to level off because of the
persistent low wavenumber errors. The multigrid simulations on the other hand, is found
to wipe out errors at all wavenumbers quite efficiently. The type of multigrid cycle that is
most efficient, is found to depend strongly on the values of mesh skewness tensor and not
so much on the initial conditions for the iteration. The convergence is found to vary with
the type of boundary conditions (Neumann boundary conditions are found to sloe down
the convergence). The type of MG cycle to be used for each simulation (geometry) is
arrived at by experimentation.

4.2 Decaying vortices

The present numerical code is tested for accuracy using the analytical solution of two
dimensional unsteady Navier-Stokes equations for the case of decaying vortices. This test
case was used by Yan Zang [5] and several other researchers before to test their schemes.

The exact solution is given by
u = —cos(x)sin(y) e 2%

v= sin(x)cos(y) e’

~41/Re

p= f%[cos(Zx) +cos(2y)]e

A cubical domain is considered for the simulations. The initial solution is advanced for a
non-dimensionless time of 20.0. This is done with various grid resolutions. This will
demonstrate the final order of accuracy of the scheme. The maximum error in u velocity is
plotted against the number of points used per 27 length in each direction, in Fig. 2. As




seen, the logarithmic plot has a slope less than 2.0 which indicates the second order of
accuracy of the scheme.

4.3 Isotropic turbulence

A Direct numerical simulation (DNS) of isotropic turbulence was conducted on a
64x64x64 grid. Initialization was done using a power spectrum. The starting Reynolds
number based on Taylor microscale was 32.0. The solution was advanced over a non-
dimensional time of 17.0. The flow was found to be isotropic in course of the whole
simulation. The flow field (energy spectrum) eventually becomes self-similar (as shown in
Fig. 3.a and 3.b). The decay of kinetic energy in isotropic turbulence has been known to
follow a power law with an exponent of about 1.3 to 1.4. Renormalization group theory
due to Yakhot and Orszag [16] predicts a value of the exponent to be 1.33, while
experiments due to Warhaft and Lumley [17] predict a value of 1.34. There is still no
agreement about the correct value, but a value of 1.34 probably comes closest to being
this value. In the present case, the decay rate exponent is expected to be between 1.32 and
1.41. The uncertainty in this prediction is due to the fact that, the state of the flow field at
early stages of the simulation does not correspond to a state of fully developed turbulence.
In fact, the turbulence may not even be realistic at these stages.

The finite difference methods are usually found to have numerical dissipation. This is due
to the fact that the leading order term in the error due to upwind finite differencing often
resembles terms that are responsible of dissipation in reality. This kind of error keeps
reducing as the order of finite difference approximation is increased. So the present
simulation has been conducted using different order upwind and central approximations to
the convective term. The variation of kinetic energy as predicted by each of these is
tabulated in Table.1. The corresponding values predicted using a spectral code have also
been presented for comparison. It is found that the finite difference code with fifth or sixth
order convective term is less dissipative than the spectral code. The third order upwind
differencing of the convective term however leads to more dissipation. The spectral
formulations usually have been found to be less dissipative than finite difference
formulations. So a comparison mentioned above is a good test for the acceptability of
present formulation for long time simulation of flow fields. Though third order upwind
difference seems to cause excessive dissipation, the error involved is found to be very
small and wouldn't affect the results substantially. So the third order convective term is
retained for use in rest of the studies.

4.4 Laminar Jet

A Laminar circular jet was simulated using the present code. A 65 x 33 x 33 trapezoidal
grid is used for this simulation. The flow in this case is axisymmetric. The farther the cross
plane contours of any flow quantity are from axisymmetry, the more the error due to use
of a non axisymmetric grid for an axisymmetric problem. Linear stretching was used in all
three directions. The centerline velocity is found to decay as inverse of axial distance
(corrected for inlet profile effects by making use of a virtual origin). The variation of




inverse of axial velocity with axial distance is shown in Fig. 4a. The velocity profiles
downstream are found to be self similar when the steady state is reached. The profiles at
various distances away from the nozzle and the analytical solution (found to fit with the
experimental data very well) are shown in Fig. 4b. The momentum flux across the nozzle
is is difficult to calculate exactly near the nozzle because of the use of very few points in
the nozzle. The flux in the simulation can be calculated using the velocity field
downstream. However the decay rate is predicted correctly and one can conclude that the
momentum flux is conserved.

4.5 Mixing Layer

Stability and structural characteristics of the temporally evolving mixing layer are studied
in this section. The case with hyperbolic tangent profile has been studied extensively by
several researchers [18 , 19). The disturbance is prescribed as a superposition of first few
eigen modes (both 2D and 3D) and the amplitudes of each of these modes are specified.
The eigen functions for this problem can be found in [19].

Linear growth rate of the first mode is studied as a function of amplitude of the first 2D
mode. This eigen value problem has previously been studied by Michalke [19]. The
amplification of first 2D mode is computed for different wavenumbers. The results are

compared in Table. 2.

The structure of the roll up was studied for 2D and 3D modes. The contours of vorticity
for the roll up due to 3D initial disturbance are plotted in Fig. 5a. Iso surfaces of vorticity
magnitude are shown for the case of 3D mode in Fig. 5b.

With the initialization similar to that used by McMurtry [1] for the species concentrations
in his study of low Mach number analysis of reacting mixing layers, the present code was
used to study the effect of heat release on the flow field. Three cases with Ce =0, 5 and
10 were studied. It is found that heat release delays the roll up (for the reasons pointed out
by McMurtry etal [1]). The mean velocity and temperature profiles are given in Fig 5c and
5d. The product formation profiles across the mixing layer are plotted in Fig Se. All these
simulations are at same values of parameters except for Ce and are conducted on a 32 x
32 x 32 grid. It is found that the product formation is hindered by heat release, which is in
qualitative agreement with deductions of McMurtry etal [1]. The product formation is
found also to depend strongly on the amplitudes of the initially prescribed disturbances.
Quantitative comparison is hence not possible since the values of these amplitudes used by

McMurtry etal [1] are unknown.

4.6.1 Couette flow




Direct numerical simulation of turbulent Couette flow at a Reynolds number of 5200
based on relative wall velocity and distance between the plates, was conducted on a 65 x
49 x 49 grid. Couette flow was chosen as a test problem for DNS of a wall bounded flow
because of the inherent complexity of the wall driven flows over the pressure driven flows.
Also Couette flow has received much attention recently as a problem used to study
turbulence in wall bounded flows [20, 21, 22].

One other reason for choosing this problem is that the present DNS would serve to
validate subgrid model for Large Eddy Simulation (LES). Large Eddy Simulations have
needed special attention in the vicinity of the wall because of the near wall non-equilibrium
structure. Problems like flow through a channel have received greater attention in this
regard. The present study would concentrate on near wall behavior of wall driven shear
flows. There however is also another interesting feature of the Couette flow. That is the
existence of strong long range correlation in the flow direction especially near the core
region. This is because of the long vortex streaks in the core region. The information
regarding such turbulent structure is embedded in the second order velocity correlations.
One would in reality need complicated theories like two point closure to study these
structures. The question whether a single point closure like the present one equation LES
be able to account for these features would be considered here.

The two point correlations depend on the length of the domain along the flow direction (in
both experiments and numerical simulations). This differences in this length may to some
extent explain the scatter of single point statistics like RMS values of velocities in the core
region, between various simulations and experiments. Being the longest of all simulations
performed in this study, the efficiency of the method can be deduced from this simulation.
The code gives a performance of about 480 Mflops on Cray-C90 rated at 1 Gflop and
advances 75 time steps in one minute. This gives a timing of 5.12 micro seconds per time
step per grid point.

The results of the present DNS study (mean velocity profile and single point statistics) are
presented in Fig. 6a and 6b along with experimental results and those from computations
on a much finer grids. Fig. 6g shows the streamwise velocity variation along a plane
normal to the mean flow. The turbulent bursts at distinct locations which are equally
spaced near the wall can be seen in the picture. This suggests the existence of A- vortices
even though the resolution is barely enough for a DNS. In Fig.6h, contours of vorticity
magnitude near the wall are shown. There seem to be spots in the wall layer with intense
vorticity magnitude. This is in agreement with the known fact that the near wall flow has
coherent vortex structures of considerably higher vorticity than the surroundings. As far as
the geometry of these structures is concerned, one would near much higher resolution for
the simulation for prediction of correct shape and ¢xpanse of these structures.

4.6.2 LES Model

A one equation model with dynamic evaluation of model coefficients based on scale self .
similarity (proposed by Kim and Menon [23]) was used for the LES. This model has




shown good promise recently but needs critical evaluation for wall bounded flows. This
model relies on the existence of a self similar range of scales in turbulence at the level of
resolved scale. The self similar structure having strong scaling laws is a characteristic of
scales at which the time scales are very small leading to equilibrium. This assumption is
however not valid for the near wall regions where the flow has bursts of vortex structures
and is in a state of non equilibrium. So use of this assumption in the near wall region leads
to extremely high values of dissipation model coefficient. So we assume that the flow is in
a state of equilibrium and has spectrum that is valid both in the inertial range and the
dissipation range. This is very essential because the flow is well resolved to a scale pretty
close the dissipation scale near the wall (for reason that involves proper resolution of the
wall shear stress). The derivation of the proposed modification is given in the Appendix .

Fig. 6¢ and 6d have the results obtained from LES simulations at Re=5200 and 8200
conducted on a 49 x 33 x 33 grid. The results match closely to those obtained from DNS
in case of 5200 Re case. The instantaneous values of model coefficients are shown in Fig

6e.

Fig. 6f shows the mean profiles of subgrid kinetic energy non-dimensionalized using wall
friction velocity, for two different Re. At a given resolution, more energy would be found
in the unresolved scale for a higher Reynolds number. It is seen that as the Re increases
the subgrid kinetic energy increases rapidly. The component wise decomposition of
subgrid kinetic energy is not possible. As a first approximation we can assume that the
scales are isotropic and divide it equally. However factors like grid aspect ratio and local
strain may in reality render this assumption invalid in reality.

4.7 Turbulent axisymmetric jet

The circular turbulent jet is a very good test problem for LES. Although of significant
importance in terms real life applications, this problem has not received much attention in
terms of LES in the past. This is because many models reduce to mixing length models for
plane shear layers and using these problems as test cases leads to a model that would fail
in flows in the next hierarchy of difficulty such as flows with axisymmetry and secondary
flow patterns. Therefore to date, no turbulence model has been able to predict correctly
the spreading rate of a circular jet without some corrections specific to this problem. The
prediction of spreading rate is directly related to the way in which the production and
dissipation terms are modeled. This would serve as an evaluation process for the dynamic
evaluation of model coefficients.

A circular wall jet with parabolic mean velocity profile was simulated at a Reynolds
number of 1000 (based on maximum mean inlet velocity and inlet diameter). The length in
the axial direction upto which the simulation was conducted is 20 diameters. A 65x33x33
grid was made use of, in this simulation. The flow was forced at the inlet using five
discrete Strouhal numbers. Each frequency was associated with a parabolic spatial mode
of forcing for axial velocity with amplitude of 4.0%. This kind on inlet velocity




specification leads to a very slow growth of kinetic energy in the shear layer in axial
direction. In reality, the RMS velocity should have much higher value near the wall of the
nozzle as compared to the core unlike the present case where the maximum value is found
at the centreline. As to the specifiation of the subgrid kinetic energy at the inlet, it is still
an unresolved issue. For the present simulation, a value proportional to the kinetic energy

of the forcing modes is used.

The centerline axial velocity decay with axial distance for this simulation is shown in Fig.
7a. The decay of RMS resolved scale velocity flucuations is plotted in Fig 7b. It is found
that the axial velocity decay is inversely proportional to the axial distance which is in
qualitative agreement with the experimental data. The turbulent kinetic energy decay is
inversely proportional to the downstream distance once the self similar region is reached in
experiments. A similar trend was predicted at the downstream end of the simulation. The
velocity profiles at various downstream locations are shown in Fig 7c. The subgrid kinetic
energy profiles at three locations that are not in the self similar region are shown in Fig
7d. Tt is found that the subgrid kinetic energy has a maximum value in the shear layer
formed at a radial distance that is close to the radius of the nozzle. This is an indication
that the shear layer has not collapsed as yet and hence we cannot expect self similarity at
these locations.

Fig. 7e shows the vorticity distribution along the axial palne of the jet. The closed
contours that are on either sides of the centerline indicate the presence of shear layer. A
fully developed turbulent flow would not have such structures, instead one can expect
these structures to have break up into smaller structures with no coherence and completely
random when visualized. To show the extent of unsteadiness due to forcing, the radial
velocity distribution on an axial plane is shown in Fig. 7f. As is seen, there is entrainment
of the flow from the boundaries. The unsteady forcing seem to persist for a long time
downstream. When a jet undergoes transition and becomes fully turbulent, the forcing is
not of much consequence. The unsteadiness is used to excite some spatial modes that
force a fast transition. Hence in the present case, Fig 7f. suggests that the jet needs to
simulated for a larger downstream distance to achieve fully turbulent self similar structure
of the flow.

While there is a qualitative agreement between the results from this simulation and the
experimental results, the quantitative comparison is not yet possible. This is because a
method of providing inlet conditions at the nozzle that correspond to realistic turbulence is
not available as yet. The behavior of the model near the wall along which there is
entrainment, is not completely understood. Further the flow at the jet boundary is found to
be intermittent and this may require special attention in LES. :

Conclusion

An implicit scheme has been proposed for use in time advancement of the solution of
Navier Stokes equations on a non staggered grid. The accuracy of the scheme has been
looked into by simulation of various laminar and turbulent flows. The stability of the




perturbation method in order to include effects of heat release was demonstrated by
simulation of a reacting temporal mixing layer where the final temperature ratio between
the maximum and the minimum values was found to be more than 2.5. This method would
serve as a workbench for future work in LES of turbulent and reacting flows.

The LES model used in this study has been found to successfully work for the low
Reynolds number wall bounded flows. The model performance at higher Re remains to be
seen. The flow structure near the wall at higher Re is rather complicated and it may not be
possible to capture all the physics in this region using a simple one equation LES. So the
main issue would be to stabilize the simulation in the near wall region. This was very
found to be very crucial near the wall in the jet simulation where the entraining flow is not
necessarily turbulent.

The present model needs initialization of the subgrid kinetic energy at start. This issue is
trivial in temporal problems as subgrid kinetic energy would evolve in time with the mean
flow. In spatially evolving flows, the spatial evolution of the flow field greatly depends on
the inflow conditions for the subgrid kinetic energy. The filtered velocity is also unsteady
in such problems. This unsteadiness should be representative of the turbulence at the inlet.
This issue is not restricted to the present model but also to the algebraic models that are

often used for LES.

One other issue important towards the comprehensive development of an LES model is
one of grid anisotropy. Very little work has been done in this area. Much of the work
relied on use of either the RMS or the harmonic mean of the grid filter widths in each
direction, as an effective isotropic filter width. Some corrections for the case of
anisotropic grids was proposed by Scotty etal [24] based on theoretical analysis but has
never been applied in an actual simulation to the best of the knowledge of the present
authors. Work along this direction would be future direction of research.
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Appendix

We consider the spectrum deduced from experiments by Pao [25].

E(k)=ae® k™" exp[-——;-a(kn)m] , where 0. is a constant with value around 1.5.

The subgrid scale dissipation for the spectral cutoff filter (with cotuff k )can now be
calculated as :

e = jzu K2E(k)dk
k.

= j2owe"3k”3 exp[—%cnt(kr])”3 ]dk
k.

£ = ,Demn-m exp[—-;— (x( km)m]

Now the total dissipation can be obtained in terms of subgrid kinetic energy and the
resolved scale by integration of energy spectrum over unresolved scales as follows.

k= j E(k)dk
kt

On substituting the Kolmogorov form of the energy spectrum for the inertial range(since
dissipative scales have very little contribution to the total energy), we get

sgs \3/2
£= ng(——)—, where A -1
A k

(4

On substituting this expression into the equation for subgrid dissipation and using the
definition of Kolmogorov scale in terms of dissipation and viscosity, we can get an
expression for subgrid dissipation. The filter that is used in the present simulation is a box
filter whereas this derivation is for a spectral cuttoff filter. But as is usually known, the
functional form of equations in LES do not change with filter type, only the model
constants are different. So finally the subgrid dissipation can be written as

sgs\3/2
e = & A) xp(_q _0_)

!




Now the model coefficients correspond to a box filter. The first of the constants is
evaluated dynamically while the second is put to 1.0 for the preliminary investigation. The
form of the spectrum assumed is valid also for the inertial range and so this expression for
dissipation can be used through out the domain. This would take care of the effects of the

dissipation range wherever it is resolved.




Table 1.

Comparison of kinetic energy decay in isotropic turbulence simulated using the present
code with various stencils for convective operator and a spectral code

time

spectral code | present code | present code | present code
with 3rd order | with 5rd order | with 6rd order
convective convective convective
term term term
0.0 4.4869¢-03 4.4869¢-03 4.4869¢e-03 4.4869¢e-03
2.0 3.5626e-03 3.5593e-03 3.5724e-03 3.5756e-03
4.0 2.9195e-03 2.9152e-03 2.9283e-03 2.9325e-03
6.0 2.4517e-03 2.4466e-03 2.4575e-03 2.4622e-03
8.0 2.0995¢-03 2.0930e-03 2.1016e-03 2.1065e-03
Table 2

Variation of amplification with wavenumber of a 2D disturbance in temporal mixing layer
with hyperbolic tangent initial velocity profile

Wavenumber | Amplification | Amplification
(Michalke's (Computation with
computations) | present code)

0.3 0.08654 0.08611

0.4446 0.09485 0.09466

0.6 0.08650 0.08639
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FIG.5b. Isoleve! surface of vorticity magnitude for a 3D roll up of mixing layer
(t=25.0)
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1. Introduction

The dynamic subgrid-scale (SGS) model, introduced by Germano et al. (1991), has been successfully
applied to various types of flow fields (Moin et al., 1991; Piomelli, 1993; Zang ef al., 1993; El-Hady et
al., 1994; Ghosal et al., 1995). Two features of this model are typically emphasized in the literature.
First, the model coefficient is determined as a part of the solution and therefore, this removes a major
drawback of the earlier eddy viscosity type SGS models (e.g., Smagorinsky's (1963) model) which was
their inability to model correctly the unresolved subgrid stresses in different types of turbulent flow
fields with a single universal constant. Second, as a result of the dynamic evaluation, the model
coefficient can become negative in certain regions of the flow field and thus, appears to have the
capability to mimic backscatter of energy from the subgrid-scales to the resolved scales.

Although it has been shown that the Germano et al.'s model is superior to the conventional fixed-
coefficient model, the dynamic method, as developed earlier, still has some drawbacks. These
drawbacks originate from a weakness of the Smagorinsky's model used in Germano et al.'s dynamic
model as well as from the mathematically inconsistent derivation and the ill-conditioning of the dynamic
formulation itself. The Smagorinsky's time-independent, algebraic eddy viscosity model used in
Germano et al's dynamic model is derived by assuming local equilibrium between the SGS energy
production and dissipation rate. Thus, non-local and history effects of the wrbulence evolution are
completely neglected in this model Also, as noted by the original authors, the dynamic model
employing Germano et al.'s mathematical identity cannot guarantee stable numerical simulations. A
popular approach to stabilize the simulations is spatial averaging of the model coefficient in directions
of flow homogeneity. This has been quite successful in simple flows such as isotropic turbulence.
However, since complex flows do not have any direction of flow homogeneity, more complex local
averaging procedures are required and have been recently proposed (e.g., Zang et al., 1993; Meneveau
et al., 1994; Kim and Menon, 1995). Although good results have been demonstrated using these
methods, local-averaging approaches are still, in general, unacceptable because local-averaging is
carried out only to avoid numerical instability, and has nothing to do with the dynamic method.
Therefore, a truly robust dynamic model must be able to provide 2 stable and accurate solution ‘using
local values of the coefficient that vary both in time and space.

Recently, Kim and Menon (1995) developed a new localized dynamic formulation associated with the
one-equation SGS model to avoid altogether local- or global-averaging and to remove the mathematical
inconsistency and the ill-conditioning problem that occurs when employing Germano et al.’s
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mathematical identity in the dynamic approach. This model provides a straightforward localized
evaluation of the model coefficients and does not cause numerical instability. They applied the localized
dynamic model to Taylor-Green vortex flows and show that this model predicts the turbulent flow field
more accurately than the conventional dynamic models such as the dynamic algebraic SGS (DASGS)
model and the local-averaged dynamic kinetic energy equation (DKSGS) model. The main objective of
this paper is to further investigate the properties of the localized dynamic model and then, eventually,
extend the model to high Reynolds number flows. The properties of the model have been studied in the
theoretical point of view using realizability conditions and Galilean invariance and on practical grounds
by applying it to Taylor-Green vortex flows, decaying and forced isotropic turbulence and turbulent
mixing layers. The results are compared with predictions using experiments, direct numerical simulation
and large-eddy simulations using the DASGS model and the local-averaged DKSGS model

The numerical simulations were carried out using a finite-difference code that is second-order accurate
in time and fifth-order (the convective terms) and sixth-order (the viscous terms) accurate in space
using upwind-biased differences (Rai and Moin, 1991). Time-accurate solutions of the incompressible
Navier-Stokes equations are obtained by the artificial compressibility approach (Chorin, 1967, Rogers
et al., 1991) which requires subiteration in pseudotime to get the divergence-free flow field. A
significant acceleration of the convergence to a steady-state divergence-free solution in pseudotime is
achieved by incorporating the full approximation scheme (FAS) multigrid concept proposed by Brandt
(1981) Earlier (Menon and Yeung, 1994), this code was validated by carrying out DNS of decaying
isotropic turbulence and comparing the resulting statistics with the predictions of a well known psuedo

spectral code (Rogallo, 1981).

In the next section, various dynamic SGS models are described with the basic equations indicating their
advantages and drawbacks. In section 3, we apply the localized model to Taylor-Green vortex flow,
decaying and force isotropic turbulence and mixing layers. The results are briefly presented here. Future
work is mentioned in section 4.

2. Dynamic subgrid-scale modeling

In physical space, the incompressible Navier-Stokes equations for LES are __z_achieved by low-pass
filtering of a computational mesh (hence, the characteristic length of this filter is A ) as follows,

ou;

= 1
-5;:- 0 (1)
om, , _ou __ 9 (- o',

-a-;‘-+ujs;:— axj (psﬁ +1‘-,-)+V3;-I'5; (2)

where 7 (x;,?) is the resolved velocity field and the SGS stress tensor T, is defined as:

T =uu -Un,. 3)

-
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L

In order to close equations (1) and (2), one needs to model t; in terms of the resolved velocity field &,.
Eddy viscosity model assumes proportionality between the anisotropic part of the SGS stress tensor,
1, -15,1,,, and the resolved scale strain rate tensor, §;:
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where v, is the eddy viscosity and

Si 2(ij + ox; ) )

Simple dimensional arguments suggest that the eddy viscosity, V. should be given by the product of a

welocity scale and a length scale. In LES, the length scale is usually related to the filter width, however,
various models differ in their prescription for the velocity scale. In Smagorinsky's (1963) model, an
algebraically described velocity scale is obtained by assuming that an equilibrium exists between energy
production and dissipation in the small scales. One-equation SGS model (Schumann, 1975; Yoshizawa,
1991; Menon et al., 1994) solves a transport equation for the SGS kinetic energy to provide the

velocity scale.

Dynamic SGS models have recently received the most attention. This type of model uses the eddy
viscosity type model as a base model and incorporates the similarity concept (Bardina et al., 1980; Liu
et al., 1994) to dynamically compute the model coefficients. To date, two typical dynamic models have
been suggested. One is dynamic algebraic SGS model (Germano et al., 1991) which is incorporated
with Smagorinsky's model, and the other is dynamic one-equation SGS model (Ghosal et al., 1995; Kim

and Menon, 1995) based on the SGS kinetic energy.
2.1. Dynamic Algebraic Subgrid-Scale (DASGS) Model

The simplest model which predicts the global energy transfer with acceptable accuracy is the algebraic
eddy viscosity model originally proposed by Smagorinsky (1963):

T, =20, 8 If]fu +38,Tu ©

where, the model coefficient ¢, is equivalent to the square of the Smagorinsky’s constant, and

m = (2§,§u)* ¢, requires adjustment for different flows. A large number of studies have been devoted

to fine-tuning ¢, for various flows of interest. This problem was circumvented by using a dynamic
procedure (Germano et al., 1991) which implements a direct evaluation of c,. In the dynamic modeling
approach, a mathematical identity between the stresses resolved at the grid filter A and a test filter A
(typically, A =23) is used to determine the model coefficient c,. In the present study, we employ the
top-hat filter for the test fillering which is considered appropriate for finite-difference methods in
physical space. Thus if the application of the test filter on any variable ¢ is denoted by $ or <¢>, it can

be shown that:
L, =T, - %= ()~ 4k, ™
where,

T, = (uy -uu, ' ®

is the SGS stress tensor defined at the test filter level Assuming self-similarity of the subgrid stresses,
one can model T; in the same way as T;: '
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Combining (6), (7) and (9), an equation for ¢, can be obtained:

Lv-’}sala=2cn M; : - (10)

M, =& [5f5, -2(3]5,)). ()

Equation (10) is a set of five independent equations for one unknown ¢,. To minimize the error that
can occur solving this over-determined system, Lilly (1992) proposed a least square method which
yields

where

LM (12)

1
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While the Germano et al.’s dynamic model has been used successfully, some drawbacks of this model

are worth noting. First, in spite of a large spatial variation of the model coefficient, it is taken out of the

spatial-filtering operation, as shown in (10), as if it were a constant in space. Local values of the model
coefficient as a function of space are then sought. This mathematical inconsistency decreases the
accuracy of the dynamic model. Second, the resulting equation (12) for ¢, is ill-conditioned because the

denominator of this expression (i.e. M;) comes from the algebraic manipulation of two base models

defined at different filtering levels and, hence, it can become very small causing numerical instability.
These two drawbacks are directly related to the Germano et al.’s mathematical identity (7). Finally,
another drawback is the prolonged occurrence of negative model coefficient in the flow field (negative
model coefficient is possible since M; can become negative) which has also been shown to cause

numerical instability (Ghosal er al., 1993). This drawback appears to result from the nature of
Smagorinsky's model used as a base model in the Germano et al.'s dynamic formulation. A possible
resolution of all these deficiencies will be discussed in the following sections.

In this paper, we refer to the original Germano et al.'s dynamic formulation incorporated with
Smagorinsky's model as the dynamic algebraic subgrid-scale (DASGS) model.

2.2. Dynamic k-Equation Subgrid-Scale (DKSGS) Model
A one-equation model for the subgrid-scale kinetic energy,
by, =37 -72), (13)

in the following form (e.g. Yoshizawa, 1991),
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has been studied recently (Menon and Yeung, 1994; Menon et al., 1994). Here, the three terms on the
right-hand-side of (14) represent, respectively, the production rate, the dissipation rate and the
transport rate of k. The SGS stress tensor 1; is modeled in terms of the SGS eddy viscosity vy and

k,, as:
1, =-2v;5; +38k,, (15)
where _ . - '
v,=c,kf,,A (16)

Here, c, is an adjustable coefficient that is determined dynamically, as shown below. As shown in (16),
v, has the form which is used in a standard one-equation model for Reynolds-averaged Navier-Stokes
computation. Equation (14) is closed by providing a model for the dissipation rate term, €. Using
simple scaling arguments, € is usually modeled as,
K}
e=c, 2 an

where, c, is another coefficient that is also obtained dynamically.

" An important feature of this model is that no assumption of local equilibrium between the subgrid-scale

energy production and dissipation rate has been made. That is, the direct computation of the subgrid-
scale kinetic energy implemented in this model can account for some non-local and history effects
which are completely neglected in the algebraic model described in section 2.1. Therefore, it is expected
(and demonstrated in this paper) that this model will give better predictions of the SGS stresses than the

algebraic model especially as the computation mesh becomes coarser.

The dynamic modeling method is applied to the k-equation subgrid-scale model to obtain appropriate
values of the coefficients ¢, and c,. To implement this method, the turbulent kinetic energy at the test

filter level is obtained from the trace of (7).

K=L/2+k,. (18)

Using a procedure similar to that outlined in Section 2.1, an equation for ¢, can be derived:

L~ 38, L, = 26N, )
where
N,=-(AK5, -3k, 5,)) 20)

Since (19) has the same form as (10), c, can be determined in a similar manner using the least-square
method:

e =1LMNe | @1)
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A mathematical identity similar to (7) between the dissipation rate resolved at the grid filter level, £,

and the test filter level, E,can be obtained as,

. ou om \ o du
eF-t=V| (=t )=
F=E-¢ v((Bxl- ax,.> 0x; ax,-)' ,(22)-
where,
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“This identity is used to evaluate the dissipation rate model coefficient ¢, by employing the model for €,

(17), and the similar model for E at the test filter level,

{48

Note that (25) is a scalar equation for a single unknown and, hence, an exact value ¢, can be obtained

without applying any approximation.

In this type of dynamic formulation, Germano ef al.'s mathematical identity and its variant (22)) are still
adopted. Hence, the mathematical inconsistent derivation and the ill-conditioning problem remain. The

advantage of this model is that by introducing the k-equation SGS model as a basic model for the

dynamic formulation the prolonged presence of negative model coefficient (i.e., ¢,) is no longer the
ate another problem

source of numerical instability. Unfortunately, however, this formulation does gener
by introducing the identity (22). That is, the equation (25) for ¢, has the unphysical property of
vanishing at high Reynolds numbers. This is due to the fact that the effective viscosity for Ein (24) is
not the same as the molecular viscosity for € in (23). However, since E is the dissipation resolved at a
scale larger than the scale at which € is resolved, the effective viscosity for E should include the energy’

transfer (to the smaller scale) at that larger scale. The scale separation between E and € increases as

Reynolds number increases. Thus, as Reynolds number increases, the modeled expression for E, (24),

becomes worse, resulting in poor prediction of the coefficient ¢, and, hence, the actual dissipation E.
the effective viscosity for

To resolve this problem, the molecular viscosity in (24) should be replaced by
E which is larger than the molecular viscosity. However, deriving an expression for the effective

viscosity is not feasible due t0 lack of information on
energy is dissipated.

the scale where the test-filter-level SGS kinetic

2.3 Localized Dynamic k-Equation Subgrid-Scale (LDKSGS) Model

Recently, Ghosal et al. (1995) developed the dynamic localization model based on the SGS kinetic
energy, DLM(k), which is applicable to inhomogeneous flows. This model introduces a variational
formulation to rigorously derive integral equations for the model coefficient as a function of position
and time and is mathematically consistent. Also, by solving the integral equations jteratively, the
numerical instability resulted from the ill-conditioning problem was effectively prevented (note that,




I

-

since this model use the SGS kinetic energy equation as a base model, the prolonged presence of
pegative model coefficient is not a source for numerical instability). However, this was achieved at an
additional price (Carati et al. (1995) reported that DLM(k) required 67% more CPU time than the
standard Smagorinsky's model while the conventional spatial-averaged dynamic model spent 4% more
CPU time) due to the complicated and expensive procedure required to solve two more integral
equations iteratively. This model has been tested in isotropic turbulence and in the flow over a
backward-facing step and demonstrated its capability by showing a good agreement with experiments
for both cases. ‘

In this paper, we focus on the Kim and Menon's (1995) localized dynamic model which is a simple,
mathematically-consistent and numerically-stable formulation. Before describing this model, some
characteristic scales and flow properties at the grid and test filter level needs to be defined:

Grid filter level Test filter level
Dissipation Production Dissipation Production
range range range range
Characteristic | Not available A Not available | Not available A=2A
length scale _
Energy level s, g, ) ) g,
Stress tensor uy; uu; (uu; ) (l't'.-'u',-) u,
Dissipation Ou; Ju; 94, J; Ou_ ou; dw, 0, ou o
rate dx; ox; 0x; 0x; ax; 0x, ax; 0x, dx; 0%,
Strainrate | Not available 5; Not available | Notavailable 5
tensor !
Effective v v V+v,
viscosity

The following discussion will attempt to demonstrate the new model uSing reasoning based in physical
space (rather than in spectral space). At the grid filter level, there are two energy levels characterized by
uu, and @z, (the factor ¥ is neglected in the following discussion for brevity). The SGS kinetic energy

k., is then determined by the difference between these two energy levels, i.e., 2k, =uu, - ug,. Since
the energy &g, is resolved at the grid filter level, the only possible length scale characterizing this

energy level is the grid resolution A. However, the characteristic length scale (say I°) for the energy
level ug, is unknown. Since uu, > 7, it can be deduced that the characteristic length scale for uu; lies
in the unresolved range of scales (i.e., I’ <A). It is clear that the production of SGS kinetic energy is
characterized by the larger length scale than the dissipation of k.. Hence, A is related to the

production mechanism of SGS kinetic energy while I is related to the dissipation mechanism. The
separation between the scales where SGS kinetic energy is produced and where it is dissipated explains
why the model for eoek,’,‘, /A is somewhat poor (i.e., the dissipation model has some scale gap

between exact and modeled terms by using A as a length scale). To properly model the production and
the dissipation of SGS kinetic energy, it is necessary to have additional information on the energy
transfers at these two length scales. However the information on the energy transfer characterized by
the smaller scale (e.g., dissipation by the molecular viscosity) is not available. Therefore an additional
assumption (similar to that used in the Reynolds-averaged Navier-Stokes computations) that the energy
transfer which occurs at the smaller scale is essentially controlled by the energy transfer at the larger
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scale and the energy determined by both energy transfers (e.g. k,,) is required. Finally, the length scale

and strain rate tensor (to parameterize the energy transfer) of the larger scale and the energy determined
by both energy transfers are sufficient to model not only the production rate of the SGS kinetic energy
(or the SGS stress tensor on which the SGS kinetic energy production mechanism depends, €.8., the
production rate of k,, ®—T,5;) but also the dissipation rate.

The definitions and relations employed at the grid filter level can be gxtended to the test filter level as
long as the scales are defined in a similar manner. The energy level iz, is resolved at the test filter level

and characterized by A =2A whereas the characteristic length scale (say I”) for the energy (uy;) is
unknown, and again (T«,T,) >ﬁﬁ, and I™ <2A. However, at the test filter level, an additional scale can
be defined. As the SGS kinetic energy, 2k,,, = uu; — %, is obtained at the grid filter level by taking grid
filtering to the total turbulent energy, uu;, the similarly defined energy at the test filter level,
(%) -, is obtained by taking test filiering to %z This energy is dissipated at the scale
characterized by the energy level (7) while produced at the characteristic length scale A =2A which
is corresponding to the energy level i, since (77,) > i, However, since this dissipative length scale
lies in the resolved range of scales, the energy is dissipated due to the eddy viscosity as well as the
molecular viscosity. Therefore, the effective viscosity is (V+V;).

Using the assumption and the parameters defined above, we obtain three different SGS stress tensors
and dissipation rates, respectively, one at the grid filter level and the other two at the test filter level:

SGS stress tensor at the grid filter level,

T. = u,uj —UU;

’ — __\h= — (262)
= =2 C,-A-[‘} (uiui —Uy; )P sij +4 85[%(“;“; —uy, )]
SGS stress tensors at the test filter level,
L, = “i“j)"‘zﬁi _
o —2cala((am)-58)] S, + 38, 4 () -52)] e
L = (TI,T:}) i, |
- oo\ A aa (26¢)
= -2cA[3{(zm)-52)] S, +38,[¢((m) - 55)]
dissipation rate at the grid filter level,
o fEE_EXE
ox; ox; ox; Ox; (27a)

= o[slam-Ta)] /A

dissipation rates at the test filter level,
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As long as both grid and test filter levels are located in the range where the similarity assumption is
valid, ¢, and ¢, in (26) and (27) remain the same. Note that (26a) and (27a) represent, respectively, the
original SGS stress tensor and the dissipation rate which must be modeled. These two expressions
contain two unknown model coefficients. Previously (see section 2.2) the expressions for T, and E,
(26b) and (27b), were adopted to dynamically determine these unknowns. However this procedure
introduced additional unknowns, u,-uj) and <-g£*—-g—'i’-> Therefore, to close the model, the other
Xj 0X;

independent relations (e.g. Germano er al.’s mathematical identity, (7), and its variant, (22)) were
needed. These additionally introduced relations become the source of both the mathematical
inconsistency and the ill-conditioning problems. In the Kim and Menon's (1995) model, they adopted
the expressions for #; and e, (26¢) and (27c), (which do not contain any additional unknowns) instead
of T, and E, respectively. Therefore, the Germano ef al.'s mathematical identity and its variant are no
longer needed to close the model. Both ¢, and ¢, can be determined in the same manner as was done
earlier for ¢, and ¢, (in section 2.2). Thus,

c‘ =-1- 1.0G. (28)
2 G0,
where
o, =-A[+((zz)-55)]'§, 29)
and,
o ou \ Odii o
vl ()-S5

c =

. [*((m)-ii)r/a ' (30)

As shown, mathematically inconsistent procedure is not involved in this dynamic formulation.
Furthermore, the denominators of (28) and (30) contain the energy information on the resolved scale
which is well defined (note that in (12), (21) and (25), the denominators contain algebraically
manipulated parameters, hence the resulting expressions were ill defined). Therefore, the ill-
conditioning problem (observed in the dynamic models using the Germano et al.'s mathematical
identity) is not considered serious here. Furthermore, the expression for c,, (30), doesn't have the
unphysical property of vanishing at high Reynolds numbers unlike (25) since the effective viscosity
(v+Vy) is used instead of just v. The existence of the similarity between the SGS stress uu; -, and

the resolved stress (W,)-W, is supported by Liu er al.'s (1994) analysis of experimental data in the
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far field of a round jet at a reasonably high Reynolds number (Re, =310)..In their work, a high
correlation between the two stress tensors is obtained.

Before applying LDKSGS model to various flow fields of interest, it is worthwhile to examine basic
properties of the model from a theoretical point of view. Recently, Vreman et al. (1994) argued that
SGS models should share some basic properties with the exact SGS stress T, to successfully predict
this unresolved quantity. They presented three properties of T; as a necessary condition that SGS
models should fulfill. First, <, is a symmetric tensor, therefore, the model of t; should be symmetric.
Second, the filtered Navier-Stokes equations are Galilean invariant. They should retain this property
even after T is replaced by the model The other property is that T; is positive for positive filters (i.e.,
the filter kemel is positive over the domain applied). Therefore, the model of T; is required to be
positive as well, if positive filter is employed. Actually, the first requirement is true for all existing SGS
models, however, the other two requirements need to be checked especially when a new SGS model is
considered. We have proven that the LDKSGS model satisfies the Galilean invariance and the
realizability requirements. However, we will briefly mention only about the realizability conditions (the
other details will be presented in the final paper).

Using the inequalities given in Vreman er al. (1994), two realizability conditions for dynamically
determined model coefficient are obtained;

Kt Kt
<o <
3AS,, 3AS,

2 k 2 it
- 588 S s 288
B B

where 5, and S, denote the smallest and the largest diagonal elements of the SGS stress, respectively
and [S]=(25;5;%. §,, has negative sign and, hence, the lower bound for the first condition is also
negative. The model coefficient ¢, should satisfy these conditions for the LDKSGS model to become a
realizable model of the SGS stress. Decaying isotropic turbulence is used for the numerical verification
of these conditions. It is observed that more than 99.9% (for the 48> grid resolution), 99.8% (for the
32° grid resolution) and 99.6% (for the 24® grid resolution) of the grid points satisfy the both
realizability conditions at the same time throughout the whole simulation. Therefore, it can be said that
LDKSGS model satisfy the realizability conditions even in strict sense. Ghosal et al. reported that the
DLM(k) model satisfy the realizability condition in about 95% of the grid points for the simulation of
decaying isotropic turbulence using the 48° grid resolution. Thus, the DLM(K) is not quite realizable
even for the simple isotropic turbulence.

3. Results and Discussion

The LDKSGS model was applied to Taylor-Green vortex flow, decaying and forced isotropic
turbulence and temporally evolving mixing layers. These flows are briefly described and only typical
results for each flow are presented. More detailed description of each test case and the other results will

be given in the final paper.

3.1. Taylor-Green vortex flow
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To evaluate the behavior of the dynamic SGS models, one popular approach is to compare the
predicted LES results with the results of DNS prediction. However, since DNS require a significant
amount of computer resources (both memory and execution time), it can be applied only to a limited
low range of Reynolds numbers. This Reynolds number range can be increased by simulating a flow that
has spatial symmetries (which are preserved in time as the flow evolves), because the information in a
fractional part of the periodic box is sufficient to describe the whole flow field using these symmetries.
This idea was exploited by Brachet er al. (1983) who simulated a Taylor-Green vortex flow and
reduced the necessary memory by 1/64 compared with that required for a general non-symmetric
periodic flow. In this work, simulation in the so-called impermeable box (0 < x,y,z < 7t) of the Taylor-
Green vortex flow is carried out. The flow field develops from the initial condition:

u = sin(x)cos(y)cos(z)
v =-—cos(x)sin(y)cos(z)
w=0

At time 7 =0, the flow is two-dimensional but becomes three-dimensional for all times ¢ > 0. This flow
is considered a simple flow field in which the generation of small scales and the resulting turbulence can
be studied. In this study, an effectively 128° DNS in a 2x-box (actually simulated using 64° grid points
in a 7t-box) has been carried out. The results were then used to evaluate the LES predictions (obtained
using a coarse grid resolution). To evaluate the performance of the SGS models, the time evolution of
the velocity-derivative (here, we use dw/dz) skewness § and flatness F factors computed from DNS
and LES data are compared. The skewness and flatness factors are defined as follows:

s g(aw/az)’z

(@wrezY)

Fe (3w/3z)’
(@w/e:)’)

Note that, here <-> denote ensemble averaging instead of test filtering. Figure 1 shows the time
evolution of the velocity derivative flaess computed from the filtered 128° DNS and the 32° LES.
This figure clearly demonstrates the better prediction of the LDKSGS model than the other dynamic

models tested.

3.2. Decaying isotropic turbulence

The experiment of decaying isotropic turbulence of Comte-Bellot and Corsin (1971) is simulated to
demonstrate the capability of LDKSGS model in predicting the decay of the turbulent energy. Another
reason of this test is to compare the results with those of Ghosal et al.'s DLM(k) (1993; 1995) which is
the only existing localized dynamic model formulated without employing the ad hoc procedure. They
simulated this experiment using 32° and 48" grid resolutions. In predicting the energy decaying ratc, 2
good agreement with the experimental data was obtained using a 48° grid resolution (see Figure 1 in
Ghosal et al., 1995), however, relatively poor results were obtained using a 32° grid resolution (see
Figure 1 in Ghosal e? al., 1993). This made them conclude that 48 grid points is the smallest possible
resolution for LES since the 32° grid resolution is not fully consistent with the basic assumption of LES




that the resolved scales carry most of the energy. To investigate this issue, we computed the resolved
energy at each grid resolution by numerically integrating the spectrum given by Comte-Bellot and
Corsin(1971) between wavenumbers zero to the maximum wavenumber represented in the grid
resolution:

128] 96° | 64° | 48° | 32° | 24° | 16° |'12° | &

Grid | 512° | 384° | 256° | 192°
resolution

Resolved | 99.8 1 99.5]98.4|96.6 | 92.2]87.3783|70.3|59.3]49.7 | 35.1 24.4 | 10.5
energy (%)

As shown, 32° and 48° grid resolutions are resolving not most of but a close amount (59.3% and

"70.3%) of the energy. Strictly speaking, both resolutions are not fully consistent with the basic

assumption of LES. They may lie in the range of very large eddy simulations (VLES) where much of
the turbulent energy lies in the unresolved scales and model quantity becomes much more important.
Therefore, the simulation of this experiment especially using the grid resolution coarser than 48° (i.e.,
the subgrid scales carry more than 30% of total turbulent kinetic energy) is a good test case in which
the quality of the SGS model can be measured. For this purpose, three grid resolutions, 48°, 32’ and
243, are used for large eddy simulations implemented here. Figure 2 shows the decay of the resolved
turbulent kinetic energy computed using the LDKSGS model at three grid resolutions, 48, 32° and
24°. The results are compared with the predictions of volume-averaged DASGS model at the 48° grid
resolution and the experimental data of Comte-Bellot and Corsin (1971). The predictions of both
models are in good agreement with the experiment. As well known, the decay of the turbulent energy
satisfy the power law, E ~ (¢')°, in the asymptotic self-similar regime. The experimental data roughly
confirms the existence of the power law by lying on a straight line on a log-log plot even though a
limited number (three) of data raises some uncertainty. The decay exponent @ is estimated by a least-
square fit to each data as follows,

Grid resolution Experiment LDKSGS DLM(%) DASGS
48° -1.20 -1.17 -1.17 -1.20
32° -1.16 -1.13
24° -1.12 -1.09

Here, the value of o predicted by DLM(K) is used as given in Carati et al. (1995). These results confirm
the agreement between the predictions of LES and the experiment. More importantly, the results of
LDKSGS mode! at all three grid resolution used (even for 24? grid resolution where about a half of the
turbulent kinetic energy is not resolved) show consistency in predicting the energy decay. This property
of the model is a fascinating feature especially when the model is applied to complex and high Reynolds
number flows where a lot of the turbulent energy lies in the unresolved scales. .

3.3 Forced isotropic turbulence

A statistically stationary isotropic turbulence is simulated using a 32° grid resolution. The main purpose

. of this simulation is to show whether a low resolution LES using the LDKSGS model can reproduce

the statistics of the large scale structures of a realistic, high Reynolds number turbulent field. The results
is compared with the existing high resolution DNS data by Vincent and Meneguizzi (1991) and Jimenez
etal. (1993).




A statistically stationary turbulent field is obtained by forcing the large scales as was done by Kerr
(1985). In this study, the initial value of all Fourier modes with wave number components equal to 0 or
1 is kept fixed. The initial conditions are obtained by generating a random realization of the energy

spectrum

-— —_——. k‘ - .
Eb = ™ |

with k, =1 and C is a constant which normalize the initial total energy to be 0.5. Our simulation was
run for 21 large-eddy turnover times. To ensure statistical independence, 25 fields were used for
statistical analysis (i.e., the time interval between successive fields is almost one large eddy turnover
time). In the simulation, an effective Taylor microscale Reynolds number Re, =116 was achieved

(where the effective attribute denotes the use of the eddy viscosity obtained from the SGS model in
place of the molecular viscosity).

Figure 3 shows the probability distribution of velocity differences, du(r) = u(x+ r)—u(r), for various
values of r (note that all values of r used here are comparable with the inertial range scales). For
generality, Su is normalized so that o? =< 8u? >=1. The LES results (using the LDKSGS model)
clearly show that the continuous distribution changes from a non-Gaussian (which has the wings) to a
Gaussian, as r increases. The same behavior of the distribution was observed in the high resolution
DNS of Vincent and Meneguizzi (1991). In addition to the basic agreement regarding the development
of the non-Gaussian statistics, the LES accurately predicts the probability for each bin. There is an
agreement between the two distributions for r = 0.39 obtained from the LES and the DNS except for
some deviation in the wing region. However, as is well known, the wings of the non-Gaussian
distribution develop mainly due to small-scale fluctuations. Therefore, the deviation between the LES

and the DN results in the wings is somewhat natural.

The statistics of velocity and its derivatives are also investigated. While the statistics of velocity are the
property of the large scales which is mostly resolved in LES, the statistics of velocity derivative are the
property of the dissipation range scales which is not resolved by LES. Therefore, the direct comparison
of LES and DNS using the statistics of velocity derivative may be meaningless. A more useful
comparison can be achieved by filtering the DNS field down to the same resolution as LES. For the
same grid resolution and flow conditions, the statistics of the LES and the filtered DNS should match
well. However, the velocity derivative statistics of the filtered DNS data is not available, therefore, the
DNS statistics of velocity derivative obtained from the full resolution simulation (shown in the table
below) should be used only as a qualitative measure for the LES results. We computed the n-th

moments of the velocity and its derivative distributions using

<x">
s“-<x’ >

“The results of this calculation is summarized in the following table,



|

mx Jau/ ay u
S, S | S Se S, S | S Se S, Se
§12°DNS [-0525| 6.1 | -12.0 | 125 9.4 370 | 2.80 | 125
240°DNS | -0.5 5.9 -9 90 | 004 | 80
64°LES | -0.35 006 | 45
32° LDKSGS| -0.332] 3.59 | -3.79 | 25.5 [0.0092] 4.90 |0.0586{ 49.5 | 2.81 12.2
Gaussian 0.0 3.0 0.0 150 | 0.0 3.0 0.0 15.0 | 3.0 15.0

where the results of 512° DNS (Re, =168.1), 240° DNS (Re, =150), and 64° LES are obtained from

Jimenez et al. (1993), Vincent and Meneguizzi (1991), and Briscolini and Santangelo (1994),
respectively. 64° LES was implemented using Kraichnan's eddy viscosity defined in the spectral space.

3.4 Temporal mixing layers

The LDKSGS model is applied to simulate the temporally evolving turbulent mixing layer. In this
simulation, the LDKSGS model response to the evolution of coherent structures is investigated. We
adopt the initial conditions used in Comte et al. (1991). The basic velocity profile is defined by

u,(y)=Utanh(2y/8,)

where 8, is the initial vorticity thickness. This unidirectional basic flow is superimposed by the 3-
dimensional, of kinetic energy 10~U?, random perturbations whose spectra are broad-banded. For the
numerical implementation, periodic boundary conditions are applied in the streamwise and spanwise
directions, and, slip-wall boundary conditions in the transverse direction. The computational domain is
cubic, with a side length chosen equal to 4 times of the most unstable streamwise wavelength which is
predicted by the inviscid linear-stability theory to be 7.078,. An initial Reynolds number is

‘Re =UBS,/v=100 and the flow is simulated up to #=1205, /U using a 32? grid resolution.

The following sequence of the temporal evolution of the mixing layer was observed. First, the mixing
layer shows the roll-up of the spanwise vorticity, resulting in 4 rollers. Subsequently, pairing of these
rollers is observed. After final pairing is accomplished, complicated structures of the flow are generated
showing a highly 3-dimensional nature. Spanwise vorticity isosurfaces in Figure 4. show the typical
sequence of changes in coherent structures. At =40 (top), two rollers appear as a result of the first
pairing. At this instant, coherent structures are in a very ordered form. At +=80 (middle), the flow starts
to generate the complicated structures and becomes 3-dimensional. At the last instant of the simulation
(bottom) coherent structures become totally 3-dimensional. The dynamically determined model
coefficients (shown as contours) are not correlated with the coherent structures at =40 since the
coherent structures are still laminar at that instant. After #=80, as the coherent structures generate 3-
dimensional complicated structures, the model coefficient are highly correlated with these turbulent-like

structures.

Figure S. shows a time evolution of the dynamically determined model coefficient. In the actual
simulations, the local values of the coefficients were employed. However, to see the behavior of the
coefficients more clearly, the volume-averaged values are presented here. The time dependent behavior
of the model coefficient confirms the findings shown in Figure 4. During the early stages of evolution,
when the mixing layer is highly organized and primarily 2-dimensional, the model coefficients remains
very small. When the structures become more 3-dimensional and generate small-scale turbulence (at
#=80), the model coefficients increase rapidly.




1

4. Future work to be included in the final paper

We have demonstrated the capability of the LDKSGS model in predicting the SGS stress more
accurately than the other dynamic models tested here. More importantly, this model appeals to have a
promising potential for the application to the high Reynolds number flows by behaving quite well in the
Jlow-resolution simulations. This issue will be further investigated in the final paper.
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FIGURE CAPTIONS

Figure 1. Temporal evolution of velocity derivative flamess computed from 32° LES using 3
different SGS models, compared with filtered 128° DNS.

Figure 2. Temporal evolution of turbulent kinetic energy in isotropic turbulence resolved at 3
different grid resolutions, compared with experiment by Comte-Bellot and Corsin (1971).

Figure 3. Probability distribution of normalized velocity difference for § different scales r,
compared with high resolution DNS by Vincent and Meneguizzi (1991).

Figure 4. Spanwise vorticity isosurfaces and dynamically evaluated model coefficient contours
computed from 32° LES using LDKSGS at t=40 (top), t=80 (middle), and t=120 (bottom).

Figure 5. Temporal evolution of model coefficient computed from 32° LES using LDKSGS

model.
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ABSTRACT

Direct and large eddy simulations of forced and decaying isotropic turbulence bave been performed to investigate
the behavior of subgrid models. Various subgrid models have been analyzed (i.e., Smagorinsky’s eddy viscosity
model, dynamic eddy viscosity model, dynamic one-equation model for the subgrid kinetic energy and scale-
similarity model). A priori analysis showed that the subgrid stress and the subgrid energy flux predicted by the scale
similarity model, and subgrid kinetic energy model (with fixed coefficients) correlate reasonably well with exact
data, while the Smagorinsky's eddy viscosity model showed relatively poar agreement. However, the correlation
for the scale similarity model decreased much more rapidly with decrease in grid resolution when compared to the
subgrid kinetic energy model. The subgrid models were then u#ed to carry out large-eddy simulations for a range of
Reynolds number. It was determined that the dissipation was modeled poorly and that correlations with exact results
were quite Jow for all models where no dynamic procedure was employed. When dynamic evaluation was
incorporated, the correlation improved significantly. The dynamic subgrid kinetic energy model showed consistently
a higher correlation for a range of Reynolds number when compared to the dynamic eddy viscosity model. These
results demonstrate the capabilities of the dynamic one-equation model.

1. INTRODUCTION

Large-eddy simulation (LES) methods are currently being used to simulate a variety of flow problems. For such
methods to perform adequately, subgrid models that faithfully represent the effects of the unresolved subgrid scales
(SGS) on the resolved motion have to be developed and validated. The capability of the subgrid models can be
determined by carrying out LES and comparing the predicted results (typically, ensemble or time-averaged proper-
ties) with experimental data. Good agreement would demonstrate the capability and validity of the chosen subgrid
model. However, this approach does not provide any means to improve the subgrid model if poor agreement with
experimental data occurs. Alternatively, the subgrid model(s) can be evaluated using direct numerical simulation
(DNS) data, and then the subgrid model(s) can be used in an LES of the same flow field, by using coarse grids.
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Comparison of the LES results with the DNS data can then be used to determine the validity of the model. This
approach, however, also has problems. Models validated using low Reynolds number DNS data (for simple flows)
invariably show poor agreement with data when used to simulate high Reynolds number, complex fows.

In recent years, studies have identified some inherent limitations of subgrid models currently being employed for
LES. For example, it has been shown that the "constant’ in the popular eddy viscosity model of Smagorinsky has to
be fine-tuned for every flow of interest. This problem was circumvented recently by using a dynamic procedure [1)
which allows a direct evaluation of the constant as a part of the solution. The dynamic model has proven quite ver-
satile, and results show that it can model correctly the behavior of subgrid stresses both near and away from the
wall, and has a capability to model backscatter [1,2]. However, even this model has some problems. Namely, the

evaluation of the constant’ can result in numerical problems. Methods to address this limitation have been - -

developed [2-4).

For LES of high Reynolds number flows, the typical grid resolution possible (due to computer resource limitations)
€an be quite coarse. In this case, a large dynamic range of scales, including "energy containing’ scales of motion,
can remain unresolved. It is not clear if eddy viscosity-type subgrid models will be able to model accurately the
effects of these unresolved scales. Since a significant amount of turbulent kinetic energy may be present in the
subgrid scales, the assumption of balance between the energy production and the dissipation rate (an assumption
implicit in the formulation of the eddy viscosity models) may be violated. Furthermore, reverse cascade of energy
{the so-called backscatter) from the subgrid scales to the resolved scales could become significant, and anisotropy
effects in the unresolved scales may bave to be taken into account. Higher order models, such as the one-equation

model studied here, may be required to take these features into account.

In this paper, the effects of the form of the chosen subgrid model on the energy transfer process between the
resolved and unresolved scales in LES, will be investigated. The results of DNS and LES of forced and decaying
isotropic turbulence is analyzed in both physical and spectral space. The goal of this research is to develop methods
%o analyze subgrid models without using any DNS information. This would enable investigation of the validity and
the applicability of subgrid models in more complex flows which cannot be computed using DNS techniques.

2. NUMERICAL METBODS AND SUBGRID MODELS

Two simulation codes have been used in this research. A well-known pseudo-spectral code of Rogallo [5) has been
used to obtain high resolution DNS data. However, no LES has been performed using this code. To carry out both
LES and DNS, a finite-difference, Navier-Stokes solver, which is fifth-order accurate in space and second-order
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accurate in time, is used. The numerical algorithm is based on the artificial compressibility method. To obtain
time-accuracy at each time step, pseudo time iterations are carried out using a multigrid technique until the
incompressibility condition has been met. The Kolmogorov-scaled energy and dissipation spectra obtained using the
finite-difference code, were compared to the results obtained using the psuedo-spectral code. Very good agreement
over nearly the entire wavenumber space was obtained [6]). Detailed evaluations of the various statistical quantities
(such as the dissipation rate, skewness, etc.) also showed that the physical space code is capable of reproducing
statistics very similar to those obtained by the spectral code.

Decaying and forced isotropic turbulence data obtained on both 64° and 128° grid resolutions have been employed
for analysis. For the decaying case, the hydrodynamic field is allowed to evolve until a "realistic”, self-similar state
has been reached. This developed isotropic state is characterized by Kolmogorov similarity in the high wavenumber
energy spectrum, power law decay of energy, and non-Gaussian velocity gradients. The decaying turbulence DNS
data used in this paper is approximately at a Taylor-scale Reynolds number Re; of 20 (obtained on a 128° grid) and
10 (obtained on a 64° grid). DNS data at a Re; of around 90 obtained (on a 128° grid) using stochastic forcing [7],
is also used for some analysis.

2.1. Subgrid Modeling in Physical Space

In physical space, the incompressible Navier-Stokes equations are filtered using a spatial filter of characteristic
width A (typically, the grid resolution) resulting in the filtered LES equations:

oy;

a_x,- =0 (1a)
3'17,- - BE, 0 2 2—
"'51—"'“)'-3;}— =~E[p5ij+15] +vViy; (1b)

where &(x,?) is the resolved velocity field, p and p are, respectively, the pressure and density, and v is the
kinematic viscosity. Here, the bar over the flow variable indicates the effect of the filtering process. The sung:id
scale stress tensor T;; is defined as: ;= xT,u_, -1; 4; and must be modeled. It has been shown [8] that proper choice
of the ﬁltcrihg process is essential to maintain model consistency. Various types of ﬁltaing processes have been
studicd in the past [8,9] such as, the top hat, the Gaussian, and the Fourier cutoff ﬁlm In the present study, we
employ the top hat filter which is considered appropriate for finite-difference methods.

The goal of SGS modeling is to represent the SGS stress 1;; in terms of the resolved field u;(x, 7) in such a manner
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that the modeled SGS stresses represent, as much as possible, the exact stresses. In addition, the energy flux to the
unresolved scales given by E(A) = -'ti,-g‘,,- must also be modeled reasonably well by the subgrid model. These issues
will be addressed in this study.

2.1.1. Smagorinsk’s Eddy Viscosity Model
The most popular subgrid model is the algebraic eddy viscosity model originally proposed by Smagorinsky:

1 -
‘t,-,-—;&,-jtu = —2V,SU @

where, vp = C A? IS | is the subgrid eddy viscosity, C is constant,

T 1 _a_u'_,_ 3'17,
Sij - 2[31,' + aX,' @)

is the resolved rate-of-strain tensor, and 15| = 125; 5;;1Y2. As noted above, the "constant’ C has o be adjusted for
different flows. For decaying isotropic turbulence, a value of C =0.03 has been suggested by Lilly [10], and is used

here.
‘This model is denoted Model A for subsequent discussions.

2.1.2. Dynamic Eddy Viscosity Model

In the dynamic modeling approach [1], a mathematical identity between the stresses resolved at the grid scale filter
A and a test filter <A> (typically, = 24) is used to determine the model coefficient C as a part of the simulation.
Thus, if the application of the test filter on any variablez is denoted by <$>, it can be shown that:

Lj = Tj= <> = <ujj > = <¥; ><u; > @)

Here, Ty = <uu; > - <i; > <u; > is defined using the test filter. Assuming that 7; is similar to t; results in an

expression for Tj; as:

T; - %8,,-1‘., = -2vr<5;> )

where, v = C<A>? 1< S>l. Combining Egs. (2), (4) and (5), an equation for C éan be obtained:

Ly~ 38Lu = 2CM; ©
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M; = -[<A>=|<§>|<S'T,>-A’<|§|§H )]
Equation (6) is a set of five independant equations for one unknown C. To minimize the emror from solving this
overdetermined system, Lilly [11] proposed a least square method which yields

LiM;;
Cc= %3?!,'174]7 ®
Studies [12] have shown that the numerical value of C obtained from Eq. (8) can vary widely (and change sign) in
the flow field. In addition, the denominator in Eq. (8) can become zero in some places. All these effects can (and do)
result in pumerical instability. Various methods have been proposed to resolve this problem. Typically, spatial
averaging (usually only in the direction of flow homogeneity) is perfarmed for both the numerator and denominator
in Eq. (8). For homogeneous, isotropic turbulence averaging can be implemented over the entire computational

domain. Thus, in the present implementation of the dyramic model, C is a function of time only.
This model is denoted Model B for subsequent discussions.

2.1.3. Subgrid Kinetic Energy Model

A one-equation model for the subgrid kinetic energy &,,, = %[Z’ - ‘i,j , in the following form:
ak::: +u ak.t‘! =1 ail C k.rg.ryz + 0 Vi aku: (9)
ot Ui an T ox j t A aX,' O ox;

has also been studied. Here, the three terms on the right-hand side of Eq. (9) represent, respectively, production, dis-
sipation, and transport of the subgrid kinetic energy. The subgrid stresses t;; are modeled in terms of the SGS eddy

viscosity v, as:
s ., 2
T = -2V§S,'j+ 31:,,,8;,- (10)

where the SGS eddy viscosity is v, = C; \Ik,,, A. The constants are chosen, based on earlier study [13], to be
G =0.09,C,=0916 and 5; = 1.0.

An important feature of this model is that no assumption of local balance between the subgrid scale energy produc-
tion and dissipation rate has been made. Therefore, it is expected that this model would be much better than the
algebraic eddy viscosity model in regions where local balance is violated. The results of this study (described




below) clearly show this capability.

To investigate the behavior of the k,,, model, the exact production, the dissipation, and the transport terms were
computed by filtering the DNS data, and then corelated with the model terms in Eq. (9). The results (not shown)
showed that the transport and the production terms in the model equation were carrelated quite well with the exact
serms (with a correlation greater that 0.6). However, the dissipation term was poorly correlated. This result agreed
with the earlier observation that the dissipation model needs further improvement. This has been addressed using a
dynamic procedure, which is outlined below. '

This model is denoted Model C for subsequent discussions.

2.1.4. Dynamic Subgrid Kinetic Energy Model

The dynamic approach can be used to obtain appropriate values of the coefficients C; and C,. To implement this
method, the kinetic energy at the test filter level is obtained by using the trace of Eq. (4): K=L;2+ <k>. Usinga
procedure similar to that outlined in Section 2.1.2, equations for both C; and C, can be derived:

Ly- 18 = -6 (<aok12 5> -85 an

v <2|_l-,_£ ___a<“—"> a<;;> =C KM - <k”> (12)
an axj > an an e <A> A

Note that, Eq. (12) is a scalar equation for a single unknown and, thus, the exact value of C, can be obtained
without applying the least square method.

This model is denoted Model D for subsequent discussion.

2.1.5. Stochastic Backscatter Model

If subgrid scales contain energy-containing eddies, then backscatter of energy from the subgrid scales to the
tesolved scales may occur. Analysis of DNS data has shown that backscatter occurs over a significant portion of the
grid points [14). Furthermore, earlier studies [15,16] have shown that the forward scatter (by the eddy viscosity
term) and the backscatter are two distinct Ms and, therefore, the two effects must be modeled separately.
Using the results of Chasnov [15], a phenomenologicalmodel for stochastic backscatter was derived earlier [17] by

assuming that the backscatter effect can be modeled by & random force which satisfies certain constraints. The
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gesulting form of the backscatter contribution to the subgrid stress model can be written as:

2 -
> = c..,nq‘i-‘-lsns,,-"‘ (13)

Here, G,, is a constant of order unity (bere, Cp, = 0.1), A is the time step of the LES, and [ is a random number
with zero mean and unit variance. This term, Eq. (13), can be added to any model for the forward scatter, i.c., Eq.
(2) or (10). In the present study, the backscatter effects were investigated in conjunction with the k,,, model (Model
C) given in Section 2.1.3. |

This combined model is denoted Model E for subsequent discussions.

2.1.6. Scale Similarity Model
A scale similarity model was recently proposed by Liu et al? based on a priori analysis of high Re, (= 310) experi-
mental data for a turbulent jet. This model is of the form:

1 = CLAUs)L; (14)

where the stress L;j; = <3l >—<¥;> <¥;> can be computed entirely from the resolved velocity field. Also,
fULs) is a scalar function defined below. The constant C, was determined to be 0.45 using the high Re, data [91.
This model is similar to the scale similarity model proposed earlier by Bardina [18], and it can be shown that the
energy flux o the subgrid scale Ey =~L; S; will exhibit both positive (forward scatter) and negative (backscatter)
in the flow. However, it has been noted earlier [9,18] and in the present study, that this backscatter (which may not
be real) can result in numerical instability. Hence, to control the backscatter, a scalar function f(I.s) is defined in

terms of Ijs, a dimensionless invariant:

e as)
VL,L; \5;S;

Iu=-'

Here, Is represents the alignment between L;; and S;;. Various forms of the scalar function fUzs) were proposed
by Liu et al®, but their validity in LES bas not been investigated. Furthermore, the experimental data was a two-
dimensional slice of the flow field and Liu et al.® had to make some assumptions to determine the contribution from
the third dimension. In the present study, a priori analysis of DNS results and LES results, was carried out to evalu-
ate this model. Various forms of backscatter control were also studied. However, for LES, f{l;s) was chosen fol-

lowing the earlier suggestion [9] such that f(l;s) = [l-exp(-lOIu’)] , if I;520,and fi;5) =0, if I;5 <0.




For subsequent discussion, the scale-similarity model without backscatter control (i.e. with f{l;5) =1) is denoted
Maodel F1 and with backscatter control is denoted Model F2.

During the study of high Reynolds number (e.g., Re, = 106) decaying turbulence, it was observed that the LES with
the Model F2 would become numerically unstable. Therefare, some simulations were carried out using 8 mixed
model which involved cambining the eddy viscosity model, Model A with Model F2. This type of model is similar
to the mixed model proposed earlier {18).

The mixed scale similarity model is denoted Model F3 for subsequent discussion.

2.2. Subgrid Modeling in Fourier Space

The Fourier space representation of the Navier-Stokes equations may be written as:

[_% +vk’] u, (k) = N,(k) (16)

where u,(K) is the velocity field in the Fourier space at a wavenumber mode k (of magnitude k), and N, (k) is the

ponlinear term which includes the effects of advection, pressure and incompressibility [6).

In Fourier space, the various terms in the above equation can be decomposed into "resolved” and "subgrid” com-

ponents in the wavenumber space by introducing a wavenumber cutoff at k.. For example, the nonlinear term may

be decomposed into [6,19]:

N,()=N,(k!k)+ N klk) (k<k.) an

The resolved nonlinear term, N, (k | k.), represents contributions from those triad interactions that couple a resolved
mode k < k, to two other resolved modes p and k - p (i.., with both p and k- p in the resolved range below k.). On
the otber hand, the rest of the triad interactions, which couple the resolved modes to subgrid modes (with at least
one of p and k- p in the subgrid range k > k), are represented by the subgrid nonlinear term, N,*(k I k,).

Energy transfer between different scales is represented by triadic interactions. The total (rate of) energy transfer to
a Fourier mode k_ due to its interactions with the subgrid scales, is given by T*(kik) =Rc[u,'(k)N,(klkci :
where the asterisk denotes complex conjugate and Re indicates the real part. The subgrid transfer spectrum function
is then given by: :
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T*(klIk,) = Y  TKIk) 8)

k-%"-s |k'|<t+-‘2—*

Here, T*(k Ik,) is a function of wavenumber magnitude k only, and the shell thickness Ak is taken as unity for con-
venience. Summation over spectral shells, denoted by ¥, for short, is also used in the formation of the energy spec-
’ A

trum function E (k) from the energy of discrete Fourier modes: E(k) = -21-24.0(') 4y (k). The energy spectrum
&

EL(k) of the resolved scales (i.e., for k Sk, signified by superscript L) at wavenumber k evolves by:

'aa'{EL(") = =2vk2EL(k) + T(k k) + T*(k 1k,) (19)

where T(k k) represents energy transfer from interactions with resolved scales only, and 7°(k Ik.) represents
interactions with subgrid modes which must be modeled in an LES.

2.2.1. Spectral Eddy Viscosity Model
A spectral subgrid eddy viscosity can be defined as [19]):

T(kik.)

- kSk 20
2k? EXKk) ¢ 20)

v (k1K) =

The corresponding modeled, subgrid nonlinear term is given by: N,™(klk.)=-v,(k 1k.) k? u,(k), and the modeled

subgrid transfer is T™(k 1k.) = Re[u,.'(k) N,."'(klkci .

It can be shown that this spectral, eddy viscosity model accounts for the total energy transfer to a spectral shell
carrectly [6]. However, this model assumes that energy and energy transfer have the same form of distribution
within a given spectral shell. In other words, energy and energy transfer are assumed to be entirely in phase with
each other in wavenumber space. This assumption, of course, deviates from the exact spectral equations.

3. RESULTS AND DISCUSSIONS

In this section, the results of the analysis in both the spectral and physical space is discussed.

3.1. Spectral Space Analysis

'Encrgy transfer information extracted from the DNS data was analyzed to determine the effect of a variable cutoff
wavenumber k. on energy transfer between the resolved (in an LES sense, k S k) and subgrid (k 2 k.) scale ranges.
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The SGS eddy viscosity (Eq. 20) and the subgrid energy transfer T“(k | k) computed using the DNS data for decay-
ing isotropic turbulence (at Re,, = 20) are shown in Figs. 1a and 1b, respectively. It can be seen that the SGS eddy
viscosity takes negative, albeit, small values at low k /k, for relatively high values of the cutoff wavenumber. This
indicates that the SGS energy transfer T*(k Ik.) takes on positive values - representing a non-negligible backscatter
of energy from the subgrid scales to the resolved scales. The eddy viscosity displays a cusp-like behavior at
gesolved wavenumbers approaching k., consistent with the results of Domaradzki [19] at higher Reynolds number.
The formation of these cusps may be understood in terms of the local nature of energy transfer in turbulence. An
active, forward-cascading transfer of energy occurring between scales close to k. causes a large and negative value
of T*(k 1k,) and, bence, a large and positive SGS eddy viscosity. The strength of this local transfer, which is evident
in Fig. 1b, depends, of course, on the energy in scales of size in the order of 1/k. and, hence, weakens with increas-

ing k..

In Fig. 1a, it may be seen that the SGS eddy viscosity at the lowest cutoff wavenumber k.=10.5 (line A) bas a much
greater value than the data at higher spectral cutoffs. This is a consequence of the subgrid transfer taking on a more
local character as the spectral cutoff is moved to lower wavenumbers. That is, energy transfer between the largest
scales and the subgrid scales becomes much more significant if the subgrid range is expanded to include the inter-
mediate scales that are closer to the largest scales. The upturn in line A at the low wavenumber end is partly a result
of the fall-off in the energy spectrum as the low wavenumber limit is approached.

The data obtained using the forced isotropic turbulence data was also analyzed and discussed earlier [6]. The results
showed that the cusp-like behavior of the SGS eddy viscosity near k. is preserved, although, more pronounced than
for decaying turbulence. The influence of k. on the magnitudes of the SGS eddy viscosity and subgrid transfer near
k. is qualitatively similar to decaying isotropic turbulence.

To assess the performance of the SGS eddy viscosity model (Eq. 20), an important criterion is how well the energy
transfer is predicted in physical space. The Fourier space considerations illustrated by Eq. 19, indicate, (in homo-
geneous turbulence) that the space average of the energy transfer is reproduced exactly by this model. However,
incorrect phase information in Fourier space translates o deviations from exact values at each grid point in physical
space. A quantitative measure of model accuracy is the correlation coefficient between the exact and modeled SGS
transfer in physical space, denoted by T°(x1k) and T™"(x 1 k.), respectively. This correlation coefficient, p(T*, T™),
which is computed over all grid points in physical space, is shown in Fig. 2a as a function of the cutoff wavenumber
k.. Also shown, is the corresponding correlation coefficient, averaged over the coordinate components, between the
exact and modeled SGS nonlinear terms, denoted by p(N*,N*™").
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Several observations may be made in Fig. 2a. First, for all of the quantities considered, model performance
improves steadily with increasing cutoff wavenumber. This is clearly consistent with the general expectation that
SGS models should improve if a wider range of scales are resolved in an LES by increasing the number of grid
points, leaving only the smallest scales to be modeled. Second, except at low cutoff wavenumbers, the nonlinear

 emis predicted more accurately than the energy transfer. Since in physical space this (subgrid) transfer is given

by the dot product between the resolved velocity vector and the subgrid nonlinear vector, we may conclude that the
alignment between these vectors is not well predicted. Third, the model produces better agreement with DNS data
in the decaying case compared to the forced case. This is not surprising, since the artificial forcing has a distorting
effect on energy transfer, especially at the large scales, which generally dominate the correlation coefficients.

The scale similarity model (Model F1) was also studied in the Fourier space. Since two filter operations are required
to evaluate this model, two cutoff wave numbers are defined as k., and k,, where k., <k,;. Using the decaying
turbulence data obtained on the 128% grid (for which, kg, = 60), the correlation of the exact subgrid stress t;; with
the modeled subgrid stress (Eq. 14, with f(/;5) = 1) was carried out. Figure 2b shows the correlation p(T,,L) as a
function of the ratio k., /k,, for a range of values of k. and k.. This figure shows that for a fixed value of k., the
correlation decreases rapidly with decrease in the test cutoff wavenumber k.. Note that k.5 /k.; = 0.5 is equivalent,
in phyiscal space, to a ratio between the test filter 2A and the grid filter A. Thus, it can be seen that there is a
significant reduction in the correlation when the grid filter A (or equivalently, k) is decreased. This implies that
the scale similarity model prediction becomes quite poor as the grid is coarsened.

It has been observed in the present study and also noted earlier [9] that the scale similarity model can predict both
forward- and backscatter. However, it is possible that the backscatter predicted by this model is not realistic. To
determine this, the correlation between the negative values of the exact subgrid stresses and the scale similarity
model was computed as a function of k., and k2. The results (not shown) indicate that for a fixed value of k., 8
high carrelation is observed only when k., is close to k;. The correlation was always lower than the correlation
shown in Fig. 2b indicating that the negative parts are relatively less correlated. In addition, with decrease in k., the
correlation of the backscatter part dropped rapidly. These results suggest that the backscatter modeled by the scale
similarity model is somewhat realistic, however, when the grid is coarsened (or k., «k.;), a significant portion of
the modeled backscatter could be non-physical.

The spectral space analysis method was then used to analyze the behavior of some of the subgrid inodels. Figure 3a
shows the Kolmogorov scaled energy spectra for the 64> DNS, and for the 32° and 16° LES using the k,,, model
with stochastic backscatter (Model E), and the scale-similarity model (Model F2) ata time ¢ = 12 which corresponds
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10 around 21.7 large-eddy tumover time. The LES simulations were performed by first filtering the 64° initial field
@.c., at ¢ = 0) in physical space into the LES grid using the top hat filter. Thus, at 7 =0, all the initial fields were
highly correlated in the physical space. (Results of the physical space analysis will be discussed in the next section).
However, in Fourier space, due to the form of the transfer function for the top hat filter, the initia! energy spectra
will be quite different for the direct and large eddy simulations. This should show up in the eventual evolution of
the flow field when analyzed in the Fourier space. However, if the simulations are self consistent, the Kolmogorov

scaled spectra should exhibit similarity, as seen in Fig. 3a

Figure 3b shows the energy spectra (normalized by the kinetic energy) as a function of wavenumber. The disagree-
ments berween DNS and LES results are more apparent in this figure. The normalized energy spectra obtained
using LES predict a higher peak energy at a lower wavenumber when compared to DNS data. Both models E and
F2 predict nearly the same peak value (about 25 percent higher than exact) and location with 323 resolution. How-
ever, as the grid is coarsened, the k,,, model shows an energy peak larger than the similarity model. Further, near
k =k gy, the energy in the high wavenumbers is much lower for the LES.

The dissipation spectra (not shown) peaks at larger wavenumbers (by a factor of 2) and all the data shows similar
trends. However, since energy is lower near k=K p,,, the LES results predict lower dissipation when compared to

the DNS results. These results suggest that the dissipation modeled by the subgrid models is insufficient and needs

to be improved.

The energy transfer in the spectral space was also analyzed using the LES data. Using the DNS and LES fields
shown in Fig. 3, the spectral eddy viscosity and the subgrid transfer at a cutoff wavenumber k. = 10 was computed
and is shown in Figs. 4a and 4b, respectively. Note that for the DNS, kgpy = 30, while for the LES, kpy, = 15.
Therefare, a k. of 10 is in the range of resolved scales for all the simulations. Figure 4a shows that the spectral eddy
viscosity behavior in all cases is nearly identical suggesting that the LES models are behaving quite well. However,
this is somewhat misleading. Figure 4b shows that at k /k. —1 both models E and F2 predict lower negative values
for the _subgrid transfer T*(k |k.). A low value for the transfer would result in a lower peak in the eddy viscosity.
However, less energy is being transferred to the subgrid scales, as seen in Fig. 3. Therefore, the combination of low
(pegative) value of T°(k ik.) and lower EL(k) near k., results in an eddy viscosity (from Eq. 20) that appears to
agree with the a priori results. |
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3.2. Physical Space Analysis

The analysis in the physical space was carried out using methods that attempted to quantify the behavior of the
models in terms of the resolution of the large-scale structures, and the correlation between the exact and the
modeled stresses and energy flux to the subgrid scales. Although the a priori analysis was carried out on all the
DNS data sets, only representative results are discussed below.

Figure 5a shows contours of the subgrid energy flux (E.(A) = —'tuﬁ,-) to the subgrid scales on a 32° grid obtained by
filtering the 128 forced stationary turbulence data. This result is compared to the prediction by the k,;, model
without backscatter (Model C, Fig. 5b) and the scale similarity models; Model F1 (Fig. 5¢) and Model F2 (Fig. 5d).
The contour interval is the same for all figures, and an arbitrary (but same) slice of the 3D field is shown. Com-
parison with the exact results (Fig. 5a) shows that there is significant similarity in regions with high positive
transfer. However, only Model F1 (Fig. 5c) is capable of resolving regions with backscatter, although, the peak
negative value is over 35% lower than in the exact case. The peak positive value also is not predicted very well.
Model C is predicting a maximum level nearly 60% lower than the exact value while Model F1 is predicting peak
level around 35% lower without backscatter control. With backscatter control, Model F2 predicts a peak level
around 42% lower. These results suggest that even when there is similarity between the resolved structures, the

peak values predicted by subgrid models can be quite different from the exact values.

To further quantify the differences and the similarities between the model predictions and the exact values, the
subgrid stress and the energy transfer cormrelations were computed. The stress correlation data indicates that the
correlation decreases with an increase in filter width for all cases. Figure 6a shows the average correlation for the
isotropic components of the subgrid stress tensor (i.c., <;) as a function of filter width. The correlation for the simi-
larity models (Models F1 and F2) decreases rapidly with increase in filter size when compared to other models.
When backscatter control was imposed (Model F2), the correlation was lower. This suggests that some of the back-
scatter intrinsic in the scale-similarity model may be realistic and this result is consistent with the data obtained ear-
lier [9]. The eddy viscosity model of Smagorinsky (Model A) consistently showed the lowest correlation, as seen in
earlier studies. On the otber hand, the k,,, model (Model C) showed a relatively high correlation for the stresses
with only a weak dependence on the filter width. However, note that the high correlation is ob_scrved for the k,,,
model only for the isotropic stress components by virtue of the definition, Eq. (10). The correlation for the off-
diagonal stress components was found to be quite Jow. Correlation analysis of the epergy flux (=—1;;5;;) is more

relevant for present analysis and is discussed in more details below.

Figure 6b shows the energy flux correlation for the models shown in Fig. 6a, and Fig. 6¢ shows the energy flux
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correlation for the models at two different Reynolds numbers. Note that the higher Reynolds number case is
obtained using stochastic forcing and therefore, direct comparison of the forced and decaying turbulence cases is not
intended in this figure. As oted earlier, the energy flux to the unresolved scales is defined as E(A)=-1;;5;; ata
filter width A for the exact energy flux. For the subgrid models,  is replaced by the appropriate model. For small
values of A/1|, where 1) is the Kolmogorov scale, the com:lation'for the scale similarity models (Model F1 and F2)
is moch higher than for the other models. The correlation decreases with increase in filter width for both Reynolds
number with the largest decrease seen for the similarity models. On the other hand, the one-equation model (Model
C) shows only a weak dependance on the filter width and Reynolds number. This suggests that the subgrid kinetic
energy model may have good potential for application in coarse grid LES.

The decrease in the subgrid stress and energy transfer correlation for the similarity models with increase in filter
width can be understood by noting that this model was developed based on analysis of very high Re; experimental
data with at least a decade of wavenumbers in the inertial range. For the present DNS data, there is no appreciable
inertial range, and this situation is even worse for the low Re, case. Furthermore, the model assumes that there is
similarity between the stresses resolved at 2A grid and the stresses resolved at the A grid. In the present case, as the

filter width increases (or as the grid coarsens), this assumption breaks down.

Since the ensemble-averaged value of the energy flux <E(A)> should be of the order of the dissipation rate €, a
comparison was carried out for all the models studied here. The results (not shown) indicate that all models
predicted values lower than the dissipation rate computed from the exact field. However, the predicted <E(4)> was
of the same order as the dissipation rate. This agreed with the earlier observations [9]. The energy flux at scales
larger than A is also of interest. For example, it was shown [9] that the energy flux at a scale 2A can be represented
from the ‘local’ and *not-so-local’ contributions. Using the Germano identity, the energy flux at 2A can be written
as: EQ24) = ~(L;<S >;+ <1>;;<5 >;). The first term on the right-hand side of the above expression represents
the *local’ transfer of energy flux from large scales to scales between A and 24, while the second term represents
the energy transfer to the scales smaller than A. A correlation between these two terms was computed for various
filter width. The results (again, not shown for brevity) indicate a very high correlation around 0.8, and since E(24)
was always positive, this suggests that both the energy fluxes were forward scattered. A similar high correlation and
behavior was observed by Liu et al®.

The coefficient C; in Models F1 and F2 was determined by assuming that the correct amount of dissipation must be
predicted by the model. Thus, C; = <t;; S;;>/<fU.s) L;; §;;> where < > denotes ensemble averaging. A value of
around 0.450.15 was estimated for the high Reynolds number experimental data [9). For the correlation analysis
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shown in Fig. 6a-c, C; = 0.45 was employed. Since, in the present study, a significant variation in the correlation

~was observed as a function of both the filter width and Re;,, this coefficient was recomputed using the above noted

relation. Figure 64 shows the variation of Cy as a function of filter width and Re,. The results suggest that this
coefficient increases with increase in filter width and decrease in Re,. However, for small filter widths, the
predicted value is. well within the range of the value determined experimentally [9] in high Re; flows. The large
wariation in the value of C; may be an artifact of the limited range of scales resolved in the present DNS data and
the problems with the similarity model (discussed above) when the grid is coarsened. This issue needs further

A priori analysis of the DNS data at Re; = 10 was also carried out since this data is used for comparison with LES
predictions (as discussed in Fig. 3). Comparison of the flow structures, and the stress and energy flux correlations

showed a picture very similar to that seen at the higher Re,, (and therefore, is not shown).

The subgrid models were implemented in LES using 32% and 16° grid resolutions. For LES, the flow field was ini-
tialized by the filtered initial field for the 64 DNS. Hence, at 1 = 0 the physical space fields were highly correlated
(although, in the Fourier space there was quite a bit of discrepancy, see Fig. 3). However, the results showed that as
time evolved, the DNS and LES became highly uncorrelated.

To analyze the LES results, the DNS data obtained on the 64° grid resolution, and the LES data obtained on the 323
grid were filtered to the 16° grid. The energy flux predicted from these two simulations at the 16* grid resolution
was then compared to the model! prediction in the actual 16° grid LES. The results showed that all the models
predicted very poor correlation (less than 0.1) when the 16 grid LES was compared to the filtered DNS data set at
the same grid level. The comparison between the two LES showed that the energy transfer correlation for the scale
similarity models (F1 and F2) was very low (around 0.12), while the k,,, model (Model E) predicted a relatively
higher value of around 0.35. This again suggests that when coarse grids are employed in LES, the k,,, model

appears to behave much better. V

To visualize these results, Fig. 7a shows the contours of the energy transfer computed on the 16° grid by filtering the
64 DNS data. Figure b shows the contours (using the same contour interval as in Fig. 7a) of the a priori prediction
by the k,,, model (Model C) on the 16° grid using the same DNS data. Clearly, there is quite a good correlation
between the two figures (as seen in Figs. 6a and 6b).

Figure 8a shows the contours of the energy transfer computed on the 16° by filtering the results of the 32° grid LES
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(using the Model C). Finally, Fig. 8b shows the energy transfer on the 16° grid obtained by carrying out LES using
Model C in that grid. If the subgrid model was accurate, then all these figures should be highly correlated. As noted
above, although the a priori correlation was high (Figs. 7a and 7b), the correlation obtained using LES data was
quite Jow (Figs. 8a and 8b). However, it is worth noting these results were much better than the results obtained
using Models A and F2 (not shown).

Figure 9a summarizes the above results for a range of Reynolds number. The computed correlation in the 16® grid
for the various models is plotted as a function of the initial Reynolds number. The data shows that the correlation
for all models is much lower in LES than in the a priori analysis. Furthermore, with increase in Re;, the correlation
for all the models decreases, indicating a serious problem with the dissipaﬁon modeling. With backscatter modeling
(Model E), a slightly higher value of the correlation was obtained when compared to the model without backscatter
(Model C). This small change does not justify the inclusion of the backscatter term. However, this issue will be

revisited at a later stage.

The above study showed that, although the one-equation model had some potential for application as a subgrid
model, it still had some major problems. To determine if these problems could be removed, a series of calculations
were carried out using the dynamic versions of the eddy viscosity model (Model B) and the dynamic one-equation
model (Model D). The results obtained from these simulations were much more encouraging. To evaluate the self
consistency of the dynamic models, the LES results obtained on the 32? grid were compared to the LES results
obtained on the 16° grid. The flow fields from these two simulations can be related through the mathématiml iden-
tity, Eq. (4). Thus, the modeled quantity <xTu,> obtained from the two data sets must be identical if the subgrid

model has performed correctly at the two grid level.

Figure 9b shows the average value of the correlation for the anisotropic componeats of <u_,-u—,~ > as a function of the
Reynolds number. Clearly, the correlation 1s very high for both the dynamic models with values consistently in the
0.85-0.97 range. However, with increase in Reynolds numbser, the correlation for the dynamic eddy viscosity model
decreases while the dynamic one-equation model maintains a high value. This result suggests that models that do
pot make the assumption of local equilibrium between energy production and dissipation rate (e.g., Model D) are
superior to algebraic eddy viscosity type models (¢.g., Model B). This result is vegy important since this implies that
such models may be applicable for LES of high Reynolds number flows using relatively coarse grids (grid resolu-

tion restrictions are typically imposed due to computer resource limitations).

Figure 10a shows the variation of the dynamically evaluated constants (i.e., C, Ci, and C.) with time during the
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simulation for Re,_ = 100. Figure 10b shows the variation of the constants with the Reynolds number. The model
coefficients go through changes in the early stages of the turbulent flow development. However, as a realistic decay-
ing isotropic field develops, the coefficients reach an asymptotic state. Also, the values of the coefficients at this
asymptotic state are almost independent of Reynolds number (Fig. 10b), except for C, in Model D which is sensi-
tive 0 both grid resolution and Reynolds number. The values of the constants are in good agreement with earlier
results. For example, the Smagorinsky’s constant Cs (which is the square-root of the dynamic model coefficient C)
is around 0.165 which is quite close to 0.17, suggested by Lilly [10] for homogeneous, isotropic turbulence with cut-
off in the inertial range.

4. CONCLUSIONS

Direct and large eddy simulations of forced and decaying isotropic turbulence have been performed using a pseu-
dospectral and a finite-difference code. Subgrid models that include a one-equation subgrid kinetic energy model
with and without a stochastic backscatter forcing term and a new scale similarity model, have been analyzed in both
tbe Fourier space and physical space using high resolution DNS data The spectral space analysis showed that
energy transfer across the cutoff wavenumber k. is dominated by local interaction. Correlation analysis of the
modeled (by a spectral eddy viscosity) and exact nonlinear terms, and the subgrid energy transfer in physical space
showed very Jow values. The correlation of the scale similarity model was much higher, bowever, the correlation
decreased with decrease in the test cutoff wave number (k7). This suggests that as the grid becomes coarse (ie. A
is large), the scale similarity model becomes less reliable.

In physical space, a priori analysis of the stress and energy transfer correlation between the exact value and the
modeled terms was carried out for a range of Re,. Results show that the stress and energy flux predicted by subgrid
models C and F2 correlates reasonably well with the DNS data, with the scale similarity model showing very high
correlation for reasonable grid resolution. However, with decrease in grid resolution, the scale similarity model
(Model F2) becomes more uncorrelated when compared to the kinetic energy model (Model C). This result is con-

sistent with the observation made in the spectral space.

‘When the subgrid models (with fixed coefficients) were used for LES, cormrelation with the DNS results was very
low. This suggests that the results of a priori analysis cannot be used to predict the behavior of the subgrid models
in actual LES. Tbe analysis of the LES data obtained on very coarse grids showed that the scale similarity model
behaves very poorly when compared to the k,,, model, which consistently showed relatively higher (albiet, low)
correlation. These results suggest that the scale similarity model can be used only for relatively fine grid resolution,
whereas, the kinetic energy model may be useful even in coarse grids. However, it was determined that to improve
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the one-equation model, the dissipation term has to be modeled mare accurately.

To determine the performance of dynamic models, two models (the dynamic eddy viscosity model and the dynamic
one-equation model) were implemented and LES was carried out for a range of Reynolds number. The correlation
analysis of these simulations was carried out without using any DNS information. It was shown that both models
consistently indicated a very high correlation even in coarse grids. However, with increase in Reynolds number, the
correlation for the dynamic eddy viscosity model decreased while for the dynamic one-equation model there was
pot much change. This showed that models that do not assume local balance between the energy production and
dissipation rate (as Model D) have a much better potential for modeling subgrid stresses in coarse grids even at rela-
tively high Reynolds number. Furthermore, the application of the dynamic procedure to the one-equation model
appears to have improved the modeled dissipation term in the original equation.
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LIST OF FIGURES

Fig. 1. The subgrid eddy viscosity and subgrid energy transfer computed from decaying isotropic turbulence DNS
data for various values of k,. Curves A-D are for k =10.5, 15.5, 30.5 and 48.5, respectively. a) Subgrid eddy

viscosity, V,(klk,); b) subgrid energy transfer, T’ (klk.).

Fig. 2. Correlation between the exact and modeled quantities computed in physical space. &) Spectral eddy viscosity
model. Curves A and B are for decaying turbulence while curves C and D are for the forced case. b) Scale

.similarity model (Model F1).

Fig. 3. Comparison of the energy spectra for DNS and LES with various subgrid models at Re,=10. a)
Kolmogorov scaled energy spectra; b) normalized energy spectra.

Fig. 4. The subgrid eddy viscosity and subgrid energy transfer computed from DNS and LES data for k.=10.5.
Curve A: 32° LES, Model E; curve B: 32% LES, Model F2; curve C: 64° DNS. a) Subgrid eddy viscosity,
v,(kik,); b) subgrid energy transfer, T (klk,).

Fig. 5. Comparison of the contours of subgrid energy transfer for forced DNS data (Re, =90) and subgrid model

predictions on 32} grid. Same contour interval and locations shown for all cases. Solid contours indicate forward
scatter and dotted contours indicate backscatter. a) Exact energy transfer from DNS data; b) energy transfer
predicted by Model C; c) energy transfer predicted by Model F1; d) energy transfer predicted by Model F2.

Fig. 6. Correlation between exact and modeled subgrid stress and energy transfer computed from 128* decaying
wrbulence DNS data. a) Stress correlation at Re,=20; b) energy transfer correlation at Re, =20; c) energy

transfer correlation at Re, =20 and 90; @) variation of C; (Model F1 and F2).

Fig. 7. Comparison of the exact and modeled subgrid energy transfer resolved on a 16° grid obtained using 64°
decaying isotropic turbulence DNS data. Same contour interval and location shown. a) Exact energy transfer from
DNS data; b) modeled energy transfer by Model C.

Fig. 8. Comparison of the subgrid energy transfer predicted by LES using Model C on a 16’ grid. Same contour
interval and location shown as in FIG. 7. a) Energy transfer predicted using 323 LES data; b) energy transfer

modeled by Model C in 16° LES.

Fig. 9. Variation of subgrid energy transfer correlation with Re, . Correlation computed on 16° grid. a) Subgrid
models with fixed coefficients; b) dynamic subgrid models.

Fig. 10. The variation of the coefficients with time and Re, for the dynamic models. a) Variation with time; b)
variation with Re, .
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Abstract

A wew formulation of the local dynamic model associated with
the subgrid-scale (SGS) kinetic energy equation closure (Jocal
dynamic k-equation subgrid-scale; LDKSGS) bas been tested.
The results are compared with direct pumerical simulation
(DNS), Germano et al's (1991) dynamic algebraic subgrid-scale
(DASGS) model and a locally aversged (based on vortical
structure) dynamic k-equation subgrid-scale (DKSGS) model
which bas been introduced by the present autbors. Basic
properties of the model bave been studied using Taylor-Green
vortex flows. By preserving the almost exact spatial locality, the
Jocal dynamic ope-equation mode! predicts the turbulent flow
field more accurately than the other models tested. In addition,
this model has proven to be efficient with lower computational
cost than the locally averaged DKSGS model. Further study is
underway to investigate the robustness of this new Jocal dynamic
model by applying it to more complex flows, such as a rearward
facing step.

1. Introduction

Tbe dypamic SGS model, introduced by Germano er al., bas
been successfully applied to various types of flow fields (see
Moib er al., 1994 for a recent review). Two desirable features of
this model are empbasized. Firstly, the model coefficient is
peither prescribed a priori nor remains & constant, rather, it is
determined as a part of the solution. This model removed a
major dawback of the earlier eddy viscosity type SGS models
which was their inability to model correctly the unresolved
subgrid stresses in different types of turbulent flow fields with a
single universal constant. Secondly, as & result of the dynamic
evaluation, the mode] coefficient can become pegative in certain
regions of the flow field and thus, appears to bave the capability
o mimic backscatter of energy from the subgrid-scales to the
resolved scales.

Altbough it bas been shown that this model is superior to the
conventional fixed-coefficient model, the dypamic metbod still
bas some drawbacks. These drawbacks appear to originate from
s weakness of the Smlgorimkymodelusedinﬁennmad.'s
dynamic model as well as from the mathematically inconsistent
derivation and the ill-conditioning of the dynamic formulation
jtself. The Smagorinsky's time-independent, algebraic eddy
viscosity model used in Germano ef ol's dynamic model is
derived by assuming Jocal equilibrium between the SGS energy
production and dissipation rate. Thus, pon-local and history
effects of the turbulence evolution are completely neglected in
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this model. In this work, we nse & transport equation for the
subgrid-scale kinetic epergy coupled with tbe dypamic
formulation. The direct computation of the SGS kinetic energy
implementedinth.i:modelilapecwdbmtforthcbcd
details of the flow structure and the turbulence development
history. It is well known that the dynamic model employing
Germano et al.'s mathematical identity cannot guarantee stable
pumerical simulations. Ope possible (and the most popular) way
to stabilize the simulations is achieved by spatial averaging of
the model coefficient in directions of flow bomogeneity. In this
work, we develop a generally applicable averaging scheme
applied over local structures defined in terms of vorticity rather
than directions of bomogeneity.

Although the above noted local averaging method and other
similar metbods (c.g., Meneveau ef al, 1994) have shown good
sesults, this local averaging approach is still, in general
unacceptable because Jocal averaging is carried out only to avoid
pumerical instability, and has pothing to do with the dynamic
method. Therefore, a truly robust dynamic model must be able o
provide a stable and accurate solution using local values of the
cocfficient that vary both in space and time. In the present study,
the mathematical inconsistency and the ill-conditioning problem
that occurs when employing Germano er al’s mathematical
identity in the dynamic approach is eliminated by introducing a
pew local dynamic formulation associated with the one-equation
SGS model. This model provides s straightforward localized
evaluation of the model coefficicnts and does pot cause
numerical instability.

In this paper, two dynamic models based on the one-equation
SGS closure (DKSGS and LDKSGS) and Germano et al's
DASGS model are evaluated by comparing results with bigh
resolution DNS data from Taylor-Green vortex flow.

2. Subgrid-scale modeling

In physical space, the incompressible Navier-Stokes equations
are filtered using s spatial filter of characteristic widts A
(typically, the grid resolution) resulting in the filtered LES
equations:

o,

A-

axj 0 m
F LA N (o Wi S
P~ +1; TS (pb,fty)ﬁ»vaxl&j )

where %(x,.f) is the resolved velocity field and the subgrid-
scale (SGS) stress tensor T, is defined as: T, =uu; - 47, lbas
been shown that the proper choice of filter is essential o
maintain model consistency (Piomelli er al., 1988). Various
types of filtering processes have been studied in the past, such as




©op-bat, Gaussian and Fourier cut-off (Liu e al., 1993; Piomelli
€1 al., 1988). In the present study, we employ the top-hat filter
which is considered appropriate for finite-difference methods.

2.1. Dynamic Algebraic Subgrid-Scale (DASGS) Model
Currently, the most popular subgrid-scale model is the algebraic

:;:gzs ;iaoosi!y model originally proposed by Smagorinsky

T = =2viS; +48,Tu ()]

»%. vy :c}?m is the subgrid eddy viscosity, ¢g is the

Smagoringky's constant,

.
S 2[3,;3“) @

is the resolved scale strain rate tensor and m-(ﬁ;fh)* The
constant ¢g requires adjustment for different flows. A large
pumber of studies bave been devoted o fine-tuning ¢ for

various flows of interest. This problem was circumvented
recently by using a dynamic procedure (Germano et al., 1991)

which implements a direct evaluation of the model coefficient,

3. In the dynamic modeling approach, a mathematical identity
between the stresses resolved at the grid scale filter A and a test
filter A (typically, A=23) is used to determine the model
coefficient c2. Thus if the application of the test filter on any
variable ¢ is denoted by ¢ or <¢ >, it can be shown that

L =T;-%;=(gg,)-ii,. O]

Here, T; = <u,uj }-f,ﬁl is defined using the test filter. Assuming
sclf-similarity of the subgrid stresses, one can model 7; in the
same way as T,: ’

T, =-2v,5; +48,T ®)

where v,:c,A’lS Combining Egs. (3), (5) and (6), an
equation for ¢ can be obtained:

Ly~48,Ly =26}M, M

s B

Eq. (7) is a set of five independent equations for one unknown
€. To minimize the error that can occur solving this over-
determined system, Lilly (1992) proposed a least square method
which yields

cl= .LML ©

STaMM;

where

In this paper, we refer to this original formulation of the dynamic
modeling coupled with Stuagorinsky model as the dynamic
algebraic subgrid-scale (DASGS) model.

2.2. Dynamic k-Equation Subgrid-Scale (DKSGS) Model

A one-equation model for the subgridcale kinetic encrgy,
ke, =<}(u?-i,’). in the following form (e.g. Yoshizawa, 1993),

ok ok 0 ok
ubi LR rpedis . LI - —tt
FaALY et "'ax( ax,) (0

has been studied recently (Menon and Yeung, 1994; Menoo e
al., 1994). Here the three terms on the right-band-side of Eq.
(10) represent, respectively, the production rate, the dissipation
rate and the transport rate of £,,,. The subgrid stresses ¢ are

modeled in terms of the SGS eddy viscosity vy as:

where, -
vr= c'kz,A . (12)

As shown Eq. (12), v; bas the form which is used in standard
one-equation models of turbulence. Eq. (10) is closed by
providing a model for the dissipation rate term, € . By simple
scaling arguments, € is usually modeled as,

i}
tﬂc,-f'-. (13)

An important feature of this model is that no assumption of local
equilibrium between the subgrid-scale energy production and
dissipation rate bas been made. That is, the direct computation
of the subgrid-scale kinetic energy implemented in this model
can account for some non-local and history effects which are
completely neglectzd in the algebraic model described in section
2.1. Therefore, it is expected that this model will give better
predictions of the eddy viscosity than the algebraic model

In the present study, we apply the dynamic modeling metbod to
the k-cquation subgrid-scale model to obtain appropriate values
of the coefficients ¢, and ¢,. To implement this method, the

turbulent kinetic energy at the test filter level is obtained from
the trace of Eq. (5), K=L, /2+k,,. Using a procedure similar
to that outlined in Section 2.1, an equation for ¢, can be derived:

l,,-}Syl., =2c,M; (14)
where
M, =_(2uz'*§0 -z(kg,ru)). (s

Eq. (14) bas the same form as Eq. (7), s0 ¢, can be determined
in a similar manner using the least-square method:

1My (16)

“EIMM,

A mathematical identity similar to Eq. (5) between the
dxssxpauon rate resolved at the grid scale filter level
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This identity is used o evaluate the dissipation rate model
cocfficient ¢, ,

F=¢G (18)
where, .

xt [&
=y )],
)

Note that Eq. (18) is 8 scalar equation for a single unknown and,
bence, the exact value ¢, can be obtained without applying the

Jeast square method

ek (20)

2.3. Local averaging of model coefficierss

It bas been reported by many authors that the evaluation of the
coefficient in Germano ef al.'s (1991) dypamic model can result
in numerical instability. The sources of instability appear to be
the ill-conditioning of the model coefficient (because the
denominator of the expression for the mode! coefficient becomes
very small at some points in the flow) and the prolonged
presence of negative model coefficients at some locations. This
problem bas been circumvented by spatially averaging the
expression for the model coefficient in directions of flow
bomogeneity (Germano er al., 1991). Recently, Meneveau et al.
(1994) suggested an averaging scheme applied along particle
trajectorics rather than directions of homogeneity. This mode! is
based on the bypothesis that the SGS mode] coefficient at a
given point sbould depend in some way on the history of the
flow along the trajectory leading to that point because turbulent
eddies are expected to evolve along this pathline. This mode! is
superior to the conventional spatial-averaging schemes in that it
retains some Jocal details of the flow structure and the
turbulence development history, both of which are ignored in the
canventional averaging schemes.

In this study, s new and simple local sveraging technique bas
been developed. This technique is based on the assumption that
the main dynamic mechanism determining the local property of
the turbulent flow occurs inside local structures. It seems natural
®© define these Jocal structures in terms of vorticity since
turbulent flow is charscterized by random three-dimensional
vorticity fluctuations. In the present study, to carry out local
svenaging based on the extraction of Jocal vortical structures, a
cubic box with 9° grid points is chosen surrounding a given

point in the flow field, and the location of the maximum vorticity
magnitude is determined. The Jocal structure is then identified
by determining all the grid points within the conto! volume
where the vorticity-magnitnde is greater than 25% of the
maximum. The model coefficients are computed by wvolume
averaging inside this Jocal structure. As a result of this local
avenaging procedure, the model coefficients vary from point-to-
point. This variation is smooth 80 that no numerical oscillation
occurs.

Although the behavior of the above poted locally averaged
dynamic one-equation mode! is reasonable (as discussed below),
the concept of local averaging (whetber based on local structures
or direction of bomogeneity) is still an artifact that is employed
primarily © avoid the numerical instability. Furthermore, the
local averaging metbod is inconsistent with the dynamic
procedure. A true dynamic mode] sbould evaluate the model
coefficients locally without any ad hoc averaging. In the
following section, we describe a new dynamic mode! that does
not employ averaging, and where the coefficicots are used
locally without causing numerical instability.

2.4. Local Dynamic k-Equation Subgrid-Scale (LDKSGS) Model

While Germano er al.’s formulation for the dynamic mode] bas
been used widely and successfully, it still bas some problems.
Firstly, in spite of large spatial wvariation of the model
coefficient’s value, it is taken out of tbe filtering operation as if it
were a constant. Local values of the model coefficient are then
determined as a function of position. This mathematical
inconsistency can decrease the accuracy of the dynamic model
Secondly, ad hoc spatial averaging has been adopted, without
any physical justification, for the purpose of stabilizing a
numerical simulation of the model. It has subsequently been
shown by Ghosal e1 al. (1993) that, for flows with directions of
bomogeneity, the solution for the mode] coefficient obtained
using this seemingly ad Aoc averaging operation is the same as
that obtained from a more rigorous variational formulation of the
dynamic model. While this averaging scheme proved to be
effective in controlling possible instabilities and led to accurate
results, it prevents the dynamic model from possessing
straightforward localization. Ghosal ez al. (1993) also proposed a
local dynamic model which seems to be applicable ©
inhomogeneous flows. However this model was implemented in
a complicated manner by employing the original Germano et
al.'s dynamic model with two integral equations obtained from s
varistional formulation (which are solved by an expensive
iterative procedure) and one auxiliary transport equation for
subgrid-scale kinetic energy that is used to constrain the
Smagorinsky's model coefficient

We propose a different approach to dynamic modeling associated
with the one-equation SGS model in order to eliminate the
deficiencies of Germano er al.'s formulation described above.
Consider some scales related o different epergy levels as

" follows:




1

_Grid filter level Test filter level
Energy level g i, (i) U, ) i
Stress tensor Ei: uy, w, (E';j) ii;
Length scale Not available E Not available Not available A
Strain rate Not available |§] Not available Not available 3‘1

At the grid filter level, there are two energy levels characterized
by the filtered kinetic energy uu, and the resolved kinetic
eoergy %E, (the factor )} is oeglected in the following
discussion for brevity). The SGS kinetic energy &, is then
determined by the difference between these two energy Jevels,
i, 2k, =k K% . Since the encrgy &, is resolved on the
grid scale A, the characteristic length scale for this energy is & .
However, the characteristic length scale (say A ) for the energy
level g, is unkpown and furthermore, since 4u, >4, and g
contains the SGS kinetic energy, it is clear that A <A. Tbus, the
chancteristic Jength scale for the energy ugy lies in the
unresolved range of scales. Whereas A is related to the
production rate of SGS kinetic epergy, A is related to the
dissipation rate. The separation between the scales where SGS
kinetic energy is produced and where it is dissipated explains
why the model for €« kY%, /3 is somewhat poor. Clearly, for
proper modeling of the production and dissipation of SGS
Kinetic energy, it is necessary to bave additional information oo
the energy transfer occurring at these two length scales. However
the information on the smaller scale is not available. Therefore
an additional assumption (similar to that used in the standard &-
equation model) that the energy transfer rate which occurs at the
smaller scale is essentially determined by the rate of the larger
scale, and the energy determined by both energy transfers is
required. Finally, the length scale and strain rate of the larger
scale, and the energy kevel difference are peeded o model pot
only the production rate of the SGS kinetic energy (or the SGS
stress tensor on which the SGS kinetic energy production
mechanism depends) but also the dissipation rate.

The definitions and relations obtained on the grid filter level can
be extended to the test filter devel as long as the scales are
defined in 8 similar manoer. As in the above discussion, the

evergy level &, is resolved at the test filter level (28) whereas
the chanacteristic length scale (say 4 ) for the energy (uy) is
unknown, and again (:,l_q‘)>:_t,i and A <2A. However, at the
sest filter Jevel, an additional similarly-defined length scale is
available. This scale (ssy & } related t the eoergy level (77).
which can be computed, is larger than x.

We can consider three different SGS stress tensors and

dissipation rates, one at the grid filter level and the other two at
the test fiter Jevel:

T = U

= k:qf(m;ﬁﬁ)rfﬁ+§su[§(;‘7‘_;‘;‘)] 2la)
e (21b)
- -2cl3{(Em)-5a)] 8, + 35, [4((me) - 2]
b = (EE/)'ﬂij o
- u@[&((m)-iﬁ)]’&+§5U[§(<m)_ﬁ)]
€ = {au ou —ﬂﬂ)
/ (222)

& & [ oo (22b)

oJslm)-28)]
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Aslonguthewt—oﬁisbutedinsidctbcmgewhm the scale
similarity assumption is valid, ¢, and ¢, in Eqgs. (21) and (22)
remain the same. Note that ; and € arc the actual models

implemented in the simulation. These two expressions contain
two unknown model coefficients. Previously (see section 2.3) we
adopted the expressions for T; and E to dynamically determine

these unknowns. However this procedure introduced additional
unknowns, (4, ) and %% . Therefare, to close the model,

onc other independent relation (e.g. Gemmano et al's
mathematical identity) is meeded. At present we usc the
expressions for §; and € (instead of T;; and E) which do not
contain any additional unknowns. Then, both ¢, and ¢, ean be
determined in the same manner as was dooe for ¢, and ¢,

e @)

¢ =
‘20,0,
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where )
oy =-a4((7z)-82)] & @4)
(es122)
% | &
25)
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The denominators of Eqs. (23) and (25) contain the encrgy
fnformation on the resolved scale which is always pon-zero.
Therefore, the ill-conditioning problem (observed in Genmano et
al's dypamic model) is ot considered serious bere. This local
dynamic mode] is expected © be valid where Germano e? al.'s
mode]l is valid since botb use ‘the same scale similarity
assumption. The existence of the similarity between the SGS
stress %u,-G7; and the resolved stress (GE,)-%¥, is
supported by Liu e7 al.'s (1994) analysis using experimental data
in the far field of a round jet at a reasonably high Reynokds
oumber. In this work, a high correlation between the two stress
®nsors is obained. The proposed new dynamic model is more
effective in actual numerical implementation, cheaper in
computational cost and appears more robust than both the
averaging approach and Ghosal ez al.’s inbomogeneous version
of Germano e1 al.’s dynamic model.

3. Numerical method and application

In this section, we bricfly describe the mumerical method
employed to solve the incompressible Navier-Stokes equations
and the test case used to evaluate the proposed dynamic models.

3.1. Numerical method

To date, the most reliable simulations of turbulent flow have
been performed with spectral methods because of the extremely
high accuracy of these methods. However, spectral metbods are
difficult to use in complex geometries. They are also relatively
complicated and are not the prevailing methods in existing
application codes. Unlike spectral methods, finite-difference
methods are simple to implement and are common in current
spplication codes. The major shortcoming of finite-difference
methods is that their accuracy Jevel is inadequate for turbulence
simulations. Rai and Moin (1991) suggested the high-order
accurate upwind-biased method as 8 good candidate for direct
simulations of turbulent flows associasted with complex
geometry. In this work, we use the non-staggered grid approach
and simulations have been carried out using second-order
accuracy in time and fifth-order (the convective terms) and sixth-
order (the viscous terms) accuracy in space. This code was
validated (Menoo and Yeung, 1994; Menon et al., 1994) by
carrying out direct numerical simulations (DNS) of decaying
isotropic turbulence and comparing the resulting statistics with
the predictions of a well-known pscudo spectral code (Rogallo,
1981). :

Time-accurate solutions of the incompressible Navier-Stwokes
equations are obtained by the artificial compressibility approach
originally proposed by Chorin (1967). The basic idea behind
artificial compressibility is to introduce a pseudo-time equation
for the pressuwe through the continuity equation. The
introduction of artificial compressibility alters the type of the
system of incompressible equations 1 bave propertics similar to

that of compressible flow and allows the extension of the well
developed algorithms of compressible flow to incompressible
problems. Originally, artificial compressibility was used for
steady-state solutions. The time-accurate solution capability is
obtained bere by adding & pscudo-time derivative of the
primitive variables o exch corresponding equation (Rogers et
al., 1991). The artificial compressibility approach is applied caly
to the pseudo-time and the physical time behavior is mot
influenced as long as the solution converges to a steady-state for
cach physical time level

The integration in pseudo-time is carried out by an explicit
method based on a Runge-Kutta time-stepping scheme. At
present, a S-step scheme bas been employed to obtain the
maximum CFL pumber. Local time-sieps (in pscudo-time),
determined by the local stability limit, are also adopted to
accelerate the convergence to a steady-state solution. A further
significant improvement in convergence is achicved by
incorporating the full approximation scheme (FAS) multigrid
concept proposed by Brandt (1981). A typical copvergence
history is shown in Figure 1, comparing a two Jevel multigrid to
a single grid solution. The code bas the capability of using up to
4 multigrid levels.

3.2. Application to Taylor-Green vortex flow

To evaluate the bebavior of the dynamic SGS models, we need
to compare the predicted LES results with the results of DNS.
However, since DNS require a significant amount of computer
resources (both memory and execution time), it can be applied
only to 8 limited range of Reynolds numbers. This Reynolds
number range can be increased by simulating a flow that has
spatial symmetries (which are preserved in time as the flow
evolves), because the information in a fractional part of the
periodic box is sufficient to describe the whole flow field using
these symmetries. This idea was exploited by Brachet er al.
(1983) who simulated a Taylor-Green vortex flow and reduced
the pecessary memory by 1/64 compared with that required fors
general pop-symmetric periodic flow. In this work, we also
simulated the so-called impermeable box (0<x,y,2S %) of the
TaylorGreen vortex flow that develops from the following
initial condition:

u = sin(x)cos(y)cos(2)
v == cos(x)sin(y)cos(2)

w=0

Al time m0, the flow is two-dimensional but becomes three-
dimensional for all times 0. This flow is considered as a
simple system in which the generation of s7mall scales and the
resulting turbulence can be studied.

4. Results and Discussion

Typical results are described below to bighlight the bebaviar of
the SGS models. We begin the study by carying out high
resolution DNS which are then used ®© evaluate the LES. Figure
2 shows the unscaled energy and dissipation spectra for 8
effectively 128° DNS data at m29. At this time, the Taylor
microscale Reynolds number Re, is approximately 32. In the
range of wave numbers k<10, the energy spectrum conforms o
the inertial k% law with the dissipation spectrum having 8 peak
at k=10, At this resolution and for the chosen initial Re=1000,




.

the energy containing range and the dissipation range have a
significant overlap (at very high Re, this should separate
widely). This is similar to the results of Domaradzki er al.
(1993) which were obtained at Re, =70. Thus, the Reynolds
pumber used in this simulation is just high enough to capture the
beginnings of the inertial range dynamics but too low 1o scparste
#t from the effects of the dissipation range dynamics.

Figure 3 shows the Kolmogorov scaled energy transfer for the
128° DNS, and for 64° and 32° LES using the DKSGS model

-writh local sveraging and the DASGS model with constrained

focal averaging at £=29. All LES simulations were performed by
first filtering the 1287 DNS flow field into the LES grid using
the top-bat filter at £=9. Thus, at #=9, all flow variables (c.g-
welocities and pressure) were highly comrelated in the physical
space. As observed in other studics, the subsequent evolution of
the flow ficld in the LES simulation will not remain coerelated
with DNS data. Therefore, point-to-point correlation between the
energy transfer predicted by DNS and the energy transfer
predicted by LES is expected to be Jow. However, if the dynamic

- models guarantee the sclf-consistency of the LES, then it is

expected that the Kolmogorov-scaled spectra computed in DNS
and LES will be similar. This is observed and is presented in
Figure 3.

To determine whether the flow fields in consecutive resolutions
bave some similarity, which is the basic assumption adopted in
the dypamic modeling formulation using two filter levels, we
investigate the relative bebavior of two energy ransfers (the
production and dissipation rates of the SGS kinetic energy)
related o exch resolution. The energy transfer sppears an
appropriate choice to check the similarity, since the property of
the turbulence is determined by the energy cascade mechanism.
In particular, the relstive bebavior of the production and
dissipation rates of the SGS kinetic energy, which are related o
the different scales, is expected to represent this energy cascade
in some scale range. Figure 4 shows the ratio between these two
energy transfers at three different resolutions (64%, 32° and 16%)
as computed from the 128° DNS data. For the 64’ LES using
the dynamic model, the information from the 32° grid level is
peeded for test filter level information. Furtber the information
oo the 16 grid Jevel is used in the 32° LES. According to this
figure, we have similar energy transfers between 32’ and 16°
grid levels (the ratios remain in the same range). However, it is
observed that there are different energy transfer mechanisms
between 64° and 32° grid levels. This means that the similarity
law is not valid in the 64° simulation, especially after £=19.
Hence LES using dynamic models is expected o give pocr
results at this resolution and time range.

To evaluate the performance of the SGS models, we compare the
time evolution of the velocity-derivative (bere, we use dw/d2),
skewness S, and flatness F, factors computed from DNS and
LES data The skewness and flatness are defined as follows
(Vincent and Mepeguzzi, 1991):

5 g(av/az)’g

(@wr2)’)

e (@w/ee)’
{(owrY’)

Note that <-> denote enscmble sveraging instead of test
filtering bere. Figures 5 and 6 show, respectively, the skewness
and flatness evolution on the 64° grid level as a function of time.
This grid level bas the cut-off wave number at k=30 which is
located inside the dissipation range (see Figure 2). Actually, in
simulations at this resolution, the role of the SGS models is not
important because a significant dissipation scales are resolved
even without the models. Without sny obvious superiority, all
SGS models contribute in 8 favorable way by pushing the Jow
resolution simulations to represent the higher resolution results.
It can be seen from both figures that the curves for 64° LES are
always located between the curves for 128° and 64’ DNS. As
poted previously, all LES results begin to deviate from the 128°
DNS results after /=21.

In figure 7, the modeled production and dissipation rates are
compared to the exact values computed from the DNS data.
While the production rates are reasonably modeled, there is
relatively poor agreement between the exact and the modeled
dissipation rates.

Figure 8 and 9 show the velocity derivative skewness and
flatness computed from the 32 LES. There is now 3 clear
difference in the results of different models: the ope-equation
mode]l is behaving better than the algebraic model. More
interestingly, it can be seen that the local dypamic model
predicts 8 more realistic flow ficld than the Jocally averaged

dynamic model.

The reason for the difference in predictions between the locally
averaged DKSGS and LDKSGS is addressed in Figure 10. The
LDKSGS model shows an improved prediction of the energy
transfer, especially for dissipation prediction. These
improvements seem to originate from the fact that, in the
LDKSGS model, the turbulent intermittency effects can be
retained by pot employing spatial averaging. Since the

- dissipation mecbanism is dominated by the scales smaller than

the scales determining the production, it bas a higher level of
intermittency than the production mechanism. Therefore,
LDKSGS can improve the prediction of the dissipation
significantly.

Figures 11 and 12 show the temporal variation of the various
dynamically determined coefficients. In the actual simulasions,
the local valves of the coefficients (obtained locally as in
LDKSGS model or by local averaging as in the DKSGS and
DASGS models) were employed. However, to simplify
comparisons, the global coefficieats (obtained by sveraging over
the whole flow field) are sbown in Figures 11 and 12. It was
observed during the simulations, that the mode] coefficients can
become locally negative. In the LES using the locally averaged
(DKSGS) and local (LDKSGS) one-equation models, negative
coefficients (i.e.”c, <0 and ¢, <0) do pot cause pumerical
instability (note that k., 2 0 always for these cases). However,

LES using the DASGS mode] becomes unstable when ¢} <0.

Therefore, the DASGS model constrained the coefficients ©
noo-pegative values (comstrained local averaging). This
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demonstrates that the DASGS model is more restrictive when
ssing local coefficients.

When the model coefficients become negative (e.g.c, <0 and
¢, <0), the model backscatiers. To estimate this backscatier, we
tequireinfomaﬁon;boutlbeenerxyeonuinedwithinthe
subgrid-scale. Thus when the subgrid kinctic energy vanishes,
backscatier should vanish. This is automatically satisfied with
ove-equation models since the eddy viscosity is modeled in
serms of the subgrid kinetic energy whereas in the algebraic
model, backscatter may occur (due to ¢} <0) thereby resulting
o mumerical instability. Another interesting observation from
Figures 11 and 12 is that the coefficient computed using the
LDKSGS mode]l are usually smaller in magnitude than the
cocfficients computed using the locally averaged model
(DKSGS). For the LDKSGS model, this is due to the local value
of the coefficient becoming negative in increased regions of the
fliow and lowers the average value. The wvariation of the
dissipation model coefficient is similar for both one-equation
models at 64° resolution. Howevez, their values at the 32° grid
level differ significantly.

8. Conclusions

A pew formulation of the Jocal dynamic model associated with
the SGS kinetic energy equation closure has been tested. The
results are compared with those from DNS, Germano et al's
DASGS mode! and locally averaged (based on vortical structure)
DKSGS model, which bas been introduced by the present
autbors. Basic properties of the model have been studied using
Taylor-Green vortex flows. By preserving the almost exact
spatial Jocality, the Jocal dynamic one-equation model predicts
the turbulent flow field more accurately than the other models
tested. Also, this mode] has proven to be very efficient in actual
numerical implementations with Jower computational cost than
the locally averaged DKSGS model. We stress that the detailed
study of similarity in consecutive resolutions (which is the base
of dynamic modeling approsches using two filter levels) should
be carried out to address the limit of dynamic models. In this
study, we demonstrated that the ratio of the production and
dissipation rates of the SGS kinetic energy is one way to check
this similarity property.
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Figure 1. Convergence history during one physical time
step oo & 64’ gid, plotted a3 root-mesn-square of
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Figure 2. Unscaled spectra of the energy (E) and the
dissipation (D) camputed from 1287 DNS data at t=29.
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Figure S. Compariscn of the velocity-derivative skewness

factor (S) for DNS and LES with various dynamic SGS

models on & 64° grid
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.- Figure 6. Comperison of the velocity-derivative flatness
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Figure 7. Comparison of the production (P) and dissipation Figure 10. Comperison of the production (P) and
(D) rates of the SGS kinetic energy for DNS and LES with dissipation (D) rates of the SGS kinetic energy for DNS
. wvarious dynamic SGS models on 8 64° grid and LES with various dynamic SGS models on & 32° grid
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Figure 8. Comparison of the velocity-derivative skewness Figm'e.ll. The time evolution of the mode! coefficients for
factor (S) for DNS and LES with various dynamic SGS dynamic SGS models.
models oo 8 32° grid .
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Figure 9. Comparison of the velocity-derivative flatness Figure 12. The time evolution of the dissipation model
factor (F) for DNS and LES with various dynamic SGS eyl e coo-equation SGS models.
mln’pid. ! cocflicients for dynamic one-equation .




